
UCRL-ID-122514

Software Safety Hazard Analysis

Version 2.0

Prepared by
J. Dennis Lawrence

Prepared for
U.S. Nuclear Regulatory Commission

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California and shall
not be used for advertising or product endorsement purposes.

This work was supported by the United States Nuclear Regulatory commission under a Memorandum of
Understanding with the United States Department of Energy, and performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Software Safety Hazard Analysis

Manuscript date: October 1995

Prepared by
J. Dennis Lawrence

Lawrence Livermore National Laboratory
7000 East Avenue
Livermore, CA 94550

Prepared for
U.S. Nuclear Regulatory Commission

Software Safety Hazard Analysis

ii

Software Safety Hazard Analysis

iii

ABSTRACT

Techniques for analyzing the safety and reliability of analog-based electronic protection systems that
serve to mitigate hazards in process control systems have been developed over many years, and are
reasonably well understood. An example is the protection system in a nuclear power plant The extension
of these techniques to systems which include digital computers is not well developed, and there is little
consensus among software engineering experts and safety experts on how to analyze such systems.

One possible technique is to extend hazard analysis to include digital computer-based systems. Software
is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in
control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully
cover the software. A method for performing software hazard analysis is proposed in this paper.

Software Safety Hazard Analysis

iv

Software Safety Hazard Analysis

v

CONTENTS

Acknowledgment..vii

Abbreviations ..viii

1. Introduction... 1
1.1. Purpose ... 1
1.2. Report Structure ... 1
1.3. Terminology ... 2

2. Introduction to the Software Hazard Analysis Process ..3
2.1. Software Hazard Analysis as Part of System Safety Analysis... 3
2.2. Software Hazard Analysis as Part of Software Design ..4
2.3. General Approach to Software Hazard Analysis ... 4
2.4. Prerequisites to Software Hazard Analysis ..5

3. Requirements Hazard Analysis... 8
3.1. Inputs to Software Requirements Hazard Analysis..14
3.2. Analysis Procedures ... 14
3.3. Outputs of Software Requirements Hazard Analysis... 15

4. Architectural Design Hazard Analysis ... 15
4.1. Inputs to Software Architecture Hazard Analysis ..16
4.2. Analysis Procedures ... 16
4.3. Outputs of Software Architecture Hazard Analysis ... 18

5. Detailed Design Hazard Analysis... 18
5.1. Inputs to Software Detailed Design Hazard Analysis ..19
5.2. Analysis Procedures ... 19
5.3. Outputs of Software Detailed Design Hazard Analysis ... 19

6. Code Hazard Analysis ..19
6.1. Inputs to Software Code Hazard Analysis ... 20
6.2. Analysis Procedures ... 20
6.3. Outputs of Software Code Hazard Analysis... 20

7. Summary and Conclusions ... 20

8. References... 23

Appendix A. Background... 25
A.1. Standards Review ..25
A.2. General Discussion of Hazard Analysis ..33
A.3. NIST Review of Software Hazard Analyses ... 38
A.4. Review of the Published Literature ... 39

Appendix B. Potential Software Safety Analysis Methods ..41

Appendix C. Software Tools for Hazard Analysis ... 45
C.1. Fault Tree Analysis ..45
C.2. FMEA, FMECA, HAZOP ... 46
C.3. Hazard Tracking ..46
C.4. Markov Chain Modeling ... 47
C.5. Reliability Growth Modeling... 47

Software Safety Hazard Analysis

vi

FIGURES

Figure 1. Waterfall Life Cycle Model ..6
Figure 2. Software Hazard Analysis within the Software Life Cycle ..7
Figure 3. Hazard Severity Categories... 9
Figure 4. Hazard Probability Levels... 9
Figure 5. Example Matrix for Determining Risk ... 10
Figure 6. Software Qualities Relating to Potential Hazards... 10
Figure 7. Guide Phrases for Software Qualities ... 11
Figure 8. Example of a Software Architecture ... 17
Figure 9. Determination of Architecture Risk Levels ..18
Figure 10. Outline of a Software Safety Plan... 26
Figure 11. IEEE 1228 Suggested Safety Analyses... 27
Figure 12. Hazard Severity Categories (from Mil-Std 882C) ..28
Figure 13. Hazard Probability Levels (from Mil-Std 882C) ..28
Figure 14. Detailed Safety Tasks (from Mil-Std 882C) ... 29
Figure 15. Example Matrix for Residual Risk (from Mil-Std 882C) ... 29
Figure 16. Example Software Hazard Criticality Matrix (from Mil-Std 882C)... 31
Figure 17. Summary of Safety System ACEs Identification..35
Figure 18. Summary of Software Requirements ACEs Identification ... 35
Figure 19. Summary of Software Design ACEs Identification ..36
Figure 20. Summary of Software Code ACEs Identification... 36
Figure 21. Summary of General Guidelines for ACE Resolution ..37
Figure 22. Classes of Hazards (Hammer 1972)..38
Appendix C Figures: FaulTrEase ... 48
Appendix C Figures: HAZOPtimizer ... 55
Appendix C Figures: HazTrac ..61
Appendix C Figures: CARMS..70
Appendix C Figures: CASRE... 76

Software Safety Hazard Analysis

vii

ACKNOWLEDGMENT

The author thanks and acknowledges the efforts of Mr. John Gallagher from the Nuclear Regulatory
Commission who reviewed this work and provided insights and comments.

Software Safety Hazard Analysis

viii

ABBREVIATIONS

ACE Abnormal Condition or Event

CHA Component Hazard Analysis

COTS Commercial Off-the-Shelf

DOD Department of Defense

ETA Event Tree Analysis

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes, Effects and Criticality Analysis

FSE Functions, Systems and Equipment

FTA Fault Tree Analysis

HAZOP Hazard and Operability Analysis

I&C Instrumentation and Control

IEEE Institute of Electronic and Electrical Engineers

MOD Ministry of Defense

NPP Nuclear Power Plant

NSCCA Nuclear Safety Cross-Check Analysis

O&SHA Operating and Support Hazard Analysis

PHA Preliminary Hazard Analysis

PHL Preliminary Hazard List

PIE Postulated Initiating Event

PRA Probabilistic Risk Assessment

RPS Reactor Protection System

SAD Software Architecture Description

SDD Software Design Description

SHA System Hazard Analysis

SRS Software Requirements Specification

SSP Software Safety Plan

SwHA Software Hazard Analysis

V&V Verification and Validation

Section 1. Introduction

1

SOFTWARE SAFETY HAZARD ANALYSIS

1. INTRODUCTION

1.1. Purpose

Techniques for analyzing the safety and
reliability of analog-based electronic protection
systems that serve to mitigate hazards in process
control systems have been developed over many
years, and are reasonably well understood. An
example is the protection system in a nuclear
power plant. The extension of these techniques
to systems which include digital computers is
not well developed, and there is little consensus
among software engineering experts and safety
experts on how to analyze such systems.

One possible technique is to extend hazard
analysis to include digital computer-based
systems. If safety is considered to be a measure
of the degree of freedom from risk, then
software safety ensures that the software in the
computer system will execute within the
application system without resulting in
unacceptable risk. Hazard analysis is a method
of identifying portions of a system which have
the potential for unacceptable hazards; the
purpose is to (1) encourage design changes
which will reduce or eliminate hazards, or (2)
carry out special analyses and tests which can
provide increased confidence in especially
vulnerable portions of the system.

Software is frequently overlooked during system
hazard analyses, but this is unacceptable when
the software is in control of a potentially
hazardous operation. In such cases, hazard
analysis should be extended to fully cover the
software. A method for performing software
hazard analysis is proposed in this paper.1

The report considers only those hazards affected
by software. Only the software portion of the
digital computer system is considered. In

1 Neither this proposed method of hazard analysis nor any other
specific method has been endorsed by the U. S. Nuclear
Regulatory Commission.

particular, it is assumed that the computer
hardware operates without failure.2

As a consequence of the above assumptions, the
report concentrates on two questions.

• If the software operates correctly (i.e.,
follows its specifications), what is the
potential effect on system hazards?

• If the software operates incorrectly (i.e.,
deviates from specifications), what is the
potential effect on system hazards?

This report does not discuss how to determine
whether a software item is correct or not.
Software analyses, reviews and tests directed at
finding faults in the software are not considered
to be a direct part of software hazard analysis.
See Lawrence (1993) for a discussion of these
Verification and Validation (V&V) topics within
the software life cycle.

Although V&V is not considered to be part of
hazard analysis, the results of a V&V effort may
well be of use. For example, the use of testing to
estimate the reliability of a software item might
be used within a fault tree analysis to estimate
the probability of a hazard occurring.

The performance of software hazard analysis
can be facilitated by the use of automated or
semi-automated tools. Examples of such tools
are considered in Appendix C.

1.2. Report Structure

Software hazard analysis is discussed in general
terms in Chapter 2. This chapter includes a list
of desirable prerequisites to software hazard
analysis, and a general discussion of the
approach proposed in the remainder of the
report.

Chapters 3-6 provide the details of the proposed
software hazard analysis process. Considerable
emphasis is placed on the requirements and

2 A separate hardware hazard analysis and—for complex computer
systems—a separate computer system hazard analysis, are
recommended to supplement the software hazard analysis.

Section 1. Introduction

2

architecture design phases of the software life
cycle to reflect the belief that faults in
requirements and architecture design
specifications have a greater potential impact on
system hazards than faults in the detailed design
or coding phases.

Tool support can be very helpful when
performing hazard analyses. A representative set
of tools is discussed briefly in Appendix C. The
goal here is to indicate the availability of
different types of tools. The tools were selected
for discussion based on availability on a PC
platform and on price. No endorsement of
specific tools is implied.

The software hazard analysis process proposed
in this report is based on a variety of standards
and technical papers described in Appendix A.
The report continues with a list of possible
safety analysis techniques taken from a System
Safety Society report (Appendix B).

1.3. Terminology

Safety engineering has special terminology of its
own. The following definitions, based primarily
on those contained in IEEE Standard 1228, are
used in this report. They are reasonably standard
definitions that have been specialized to
computer software in a few places.

• An accident is an unplanned event or series
of events that result in death, injury, illness,
environmental damage, or damage to or loss
of equipment or property. (The word mishap
is sometimes used to mean an accident,
financial loss or public relations loss.)

Accidents generally can be divided into two
categories: those that involve the unplanned
release of energy and those that involve the
unplanned release of toxicity.

• A system hazard is an application system
condition that is a prerequisite to an
accident.

That is, the system states can be divided into
two sets. No state in the first set (of
nonhazardous states) can directly lead to an
accident, while accidents may result from
any state in the second set (of hazardous
states). Note that a system can be in a
hazardous state without an accident
occurring. It is the potential for causing an
accident that creates the hazard, not
necessarily the actuality, because conditions
that convert the hazard to an accident are not
concurrently present. A hazard is a potential
for an accident that can be converted to
actuality by encountering a triggering event
or condition within the foreseeable
operational envelope of the system.

• The term risk is used to designate a measure
that combines the likelihood that a system
hazard will occur, the likelihood that an
accident will occur and an estimate of the
severity of the worst plausible accident.

The simplest measure is to simply multiply
the probability that a hazard occurs, the
conditional probability that a triggering
event or condition will occur while the
hazard is present, and the estimated worst-
case severity of the accident.

• Safety-critical software3 is software whose
inadvertent response to stimuli, failure to
respond when required, response out-of-
sequence, or response in unplanned
combination with others can result in an
accident or the exacerbation of an accident.
This includes software whose operation or
failure to operate can lead to a hazardous
state, software intended to recover from
equipment malfunctions or

3The word “critical,” as used in this report, refers to software
criticality, not nuclear criticality.

Section 2. Introduction to the Software Hazard Analysis Process

3

external insults, and software intended to
mitigate the severity of, or recover from, an
accident.4

• A critical system is a system whose failure
may lead to unacceptable consequences. The
results of failure may affect the developers
of the system, its direct users, their
customers or the general public. The
consequences may involve loss of life or
property, financial loss, legal liability,
regulatory actions or even the loss of good
will if that is extremely important. The term
safety critical refers to a system whose
failure could lead to loss of life, injury, or
damage to the environment. For nuclear
reactors, this includes radiation releases or
exposure to the public or operators and
reactor workers.

• The term safety is used to mean the extent to
which a system is free from system hazard.

• Hazard analysis is the process of identifying
and evaluating the hazards of a system, and
then either eliminating the hazard or
reducing its risk to an acceptable level.
(NIST 1993)

• Software hazard analysis “. . . eliminates or
controls software hazards and hazards
related to interfaces between the software
and the system (including hardware and
human components). It includes analyzing
the requirements, design, code, user
interfaces and changes.” (NIST 1993)

2. INTRODUCTION TO THE
SOFTWARE HAZARD
ANALYSIS PROCESS

2.1. Software Hazard Analysis as
Part of System Safety Analysis

Software hazard analysis should be performed
within the context of the overall system design,

4 There are cases in which software other than control system
software can cause a hazard. An example is a fire suppression
modeling program which makes incorrect recommendations for
fire suppression equipment, causing a hazard in case of fire due to
lack of the necessary fire fighting equipment. Such cases are
outside the scope of this report.

for both those attributes of the system design
that contribute to the system’s ability to perform
the assigned tasks that are derived from the
plant’s safety mission as well as the assigned
tasks derived from the plant’s primary mission
that could be detrimental to the plant’s safety
mission. Consequently, those performing the
software hazard analysis must understand the
role of the software in the performance of the
system safety functions and also in the
performance of the system control and
monitoring functions, and the effect of the
software acting within the system with respect to
its potential impact on the accomplishment of
the plant’s safety mission. This understanding is
obtained from the system safety analysis; in
particular, the system’s hazard analysis. IEEE
Standard 1228 presents the relationship between
the system safety analysis and the software
safety analysis in more detail. The following
discussion provides an overview of the safety
case for a nuclear power plant.

The safety properties of a nuclear reactor design
are fundamentally affected by three broad design
principles: quality, diversity and defense-in-
depth. These principles may be applied at
various levels of the design; determining where
and how to apply the principles is one of the
more important activities of the design process.
All three principles should have wide
applicability to other forms of process control
systems.

The main hazards in a nuclear reactor are the
possibility of a rapid, energetic fission reaction
(e.g., Chernobyl) and the release of radioactive
fission products which are the waste products of
the fission reaction. In the U.S. (and many other
countries), regulations mandate that the physics
of the core design make rapid reactions self
limiting. This leaves the prevention of the
release of fission products as the main hazard to
be controlled.

Three levels of defense-in-depth are provided to
control the release of fission products. Each is
sufficient to prevent public exposure to any
significant level of radiation. First, each element
of the fuel is surrounded by a barrier. In light
water reactors, the fuel is composed of

Section 2. Introduction to the Software Hazard Analysis Process

4

numerous metal tubes, each tube containing fuel
pellets and associated fission products. Second,
fission products that might be released from the
fuel are further contained by the reactor coolant
systems. Should some event cause breach of
both of these barriers, a third barrier, the
containment building, surrounds the reactor
coolant system. Each of these barriers is
fundamentally different in design, providing
diversity at each level of defense-in-depth.

Barrier integrity is maintained first by building
in a high degree of quality, and second by
ensuring the barriers are not exposed to
environmental conditions that exceed design
assumptions. Active systems are provided to
enforce these environmental limits. For example,
the most important environmental considerations
for the fuel are that the heat generated by the
fuel be limited, and that the heat that is
generated be taken away. These are the safety
functions that must be accomplished to ensure
the barrier (fuel clad) immediately surrounding
the fuel and fission products remains intact.
Diversity and defense-in-depth are provided for
these functions. For example, power can be
limited by dropping solid neutron absorbers
(control rods) or injecting liquid absorber into
the coolant system.

Each function can be actuated by multiple
independent systems. For example, the control
rods may be inserted automatically by the
control system, the reactor protection system,
the ATWS (Anticipated Transient Without
Scram) Mitigation System, the Engineered
Safety Actuation System (ESFAS), or the
reactor operator. In proposed U. S. advanced
reactor designs that involve computer-based
control and protection systems, at least two
diverse, automatic systems must be capable of
initiating each safety function such that the
consequences of each postulated accident are
acceptable. Furthermore, sufficient information
and manual controls must be provided to allow
the operator to start and control each safety
function.

This diversity may be accomplished via
diversity in the computer systems. Hardware
diversity may include multiple CPU types and

multiple communication paths. Software
diversity could involve independent calculations
of the process state using different types of
information—temperature and pressure
calculations in one piece of software compared
to pressure and neutron flux in another piece—
either of which is sufficient to determine, in
time, if backup systems must be started to
achieve safety functions.

Finally, quality parts and design are used to
reduce the probability of any individual failures
from occurring.

2.2. Software Hazard Analysis as
Part of Software Design

The ultimate objectives of any hazard analysis
program are to identify and correct deficiencies
and to provide information on the necessary
safeguards. This is certainly true of Software
Hazard Analysis. There is no point to the
analysis unless appropriate action is taken. At
least four types of actions may be appropriate,
depending on the circumstances:

1. The system design may be changed to
eliminate identified hazards which are
affected by software or are not adequately
handled by software, or to reduce the
hazards to acceptable levels, or to adjust the
system architecture so that identified
hazards are compensated by defense-in-
depth.

2. The software design may be changed to
eliminate identified hazards, or reduce them
to acceptable levels.

3. The quality of the software may be
improved sufficiently to reduce the
probability of a hazard to an acceptable
level.

4. The application system may be rejected if it
is considered too hazardous.

2.3. General Approach to Software
Hazard Analysis

Software hazard analysis should be a defined
aspect of the software life cycle. No specific life

Section 2. Introduction to the Software Hazard Analysis Process

5

cycle is endorsed here (see Lawrence (1993) for
a discussion of life cycles). To provide some
specificity to the discussion, a waterfall life
cycle is assumed, as shown in Figure 1. Not all
the phases in the figure are included in the
hazard analysis.

Hazard analysis begins with analyses of the
reactor design which identify parameter limits of
the safe operating region for the thermal-
hydraulic properties of the reactor. This provides
a variety of documents which serve as the
starting point for the software hazard analysis.
The general approach is shown in Figure 2,
which shows the technical development
activities (requirements, architecture, design,
code), the V&V activities, and the hazard
analysis activities. Results of the various
software hazard analyses are used, as
appropriate, to change the protection system
design, change the software architecture or
design, and to identify portions of the software
which require increased attention to quality.

This report does not discuss methods or
techniques for performing the recommended
hazard analyses. Little extensive experience with
analysis techniques has been reported in the
literature. Hazard and Operability Analysis
(HAZOP), Failure Modes and Effects Analysis
(FMEA) and Fault Tree Analysis (FTA) are
possibilities (see Appendix A). Other potential
possibilities are listed in Appendix B.

2.4. Prerequisites to Software
Hazard Analysis

Considerable work is required before a software
hazard analysis process can begin. The
following list will generally require some
modifications to fit specific projects. Since
iterations of analyses are necessary as the
software development proceeds, no strict
chronological rigidity is implied. For example, a
Preliminary Hazard Analysis is needed before a
Software Requirements Hazard Analysis can
take place. However, the results of that analysis
or some other requirements analysis might result
in a system design change, which in turn might
require modifications to the Preliminary Hazard
Analysis.

Each of the prerequisite steps should result in
one or more documents. These will be required
in order to perform the various software hazard
analyses.

1. Prepare a Preliminary Hazard List (PHL) for
the application system. This will contain a
list of all identified hazards, and will
generally be based on the reactor Safety
Analysis Report and the list of Postulated
Initiating Events (PIE).

2. Prepare a Preliminary Hazard Analysis
(PHA) for the application system and
subsystems which have impact on the
software. This evaluates each of the hazards
contained in the PHL, and should describe
the expected impact of the software on each
hazard.

It is recommended that the PHA assign a
preliminary severity level to each hazard.
The method outlined in IEC 1226 is
acceptable (see Appendix A.1.4 for a
discussion). This method assigns a level
code of A, B or C to each hazard, where “A”
is assigned to the most critical software.

3. Carry out the required hazard investigations
and evaluations at the application system
and application subsystem level. This should
include an evaluation of the impact of
software on hazards.

There are at least four potential impacts of
software on each hazard (see IEEE 1228,
discussed in Appendix A.1.1). These are:

a. The software may challenge the reactor
safety systems; failure of the software to
operate correctly has the potential for
creating a hazardous condition that must
be removed or mitigated by some other
system. An example is a software-based
reactor control system whose failure
may initiate a reactor transient that
causes reactor operation to diverge
toward an unsafe operating region.

Section 2. Introduction to the Software Hazard Analysis Process

6

Software Design

Software
Implementation

Integration

Validation

Installation

Operation and
Maintenance

Requirements
Specification

Architecture
Design

Systems Design

Figure 1. Waterfall Life Cycle Model

Section 2. Introduction to the Software Hazard Analysis Process

7

V&V Organization

Analyze
Hazards

Analyze
Hazards

Analyze
Hazards

Analyze
Hazards

Write
SRS

Write
SAD

Write
SDD

Write
Code

Verify
System
Design

Verify
Requirements

Verify
Architecture

Verify
Detailed
Design

Verify and
Test Code

System Safety Organization

SAR
PHA
PHL Report Report

Report Report

System Design
Spec

Report

SRS SAD SDD

Code

System Design
Spec

SRS

SRS

SRS

ReportReportReport

Report
Report

SAD

SAD

SAD

SDD

SDD

SDD

Code

Code

Figure 2. Software Hazard Analysis within the Software Life Cycle

Abbreviations

PHA Preliminary Hazard Analysis

PHL Preliminary Hazard Analysis

SAD Software Architecture Description

SAR Safety Analysis Report

SDD Software Design Description

SRS Software Requirements Specification

Section 3. Requirements Hazard Analysis

8

b. The software may be responsible for
preventing a hazard from progressing to
an incident; failure of the software to
operate correctly has the potential for
converting the hazard to an accident. An
example is software control of the
reactor trip system, where potential
failure of this system during an
emergency would permit a reactor
transient to progress to a significant
event.

c. The software may be used to move the
system from a hazardous state to a
nonhazardous state, where the hazardous
state is caused by some portion of the
application system other than the
software. Software controlling the
emergency core cooling systems is an
example of this, where decay heat is
removed to move a reactor from hot to
cold shutdown when other cooling
systems are unavailable.

d. The software may be used to mitigate
the consequences of an accident. An
example is software controlling the
containment isolation system, which
prevents a radiation release inside the
containment structure from escaping and
affecting the general public.

4. Assign a consequence level and probability
of occurrence to each identified hazard. The
tables shown in Figures 3 and 4 can be used
as a basis for this. These tables are based on
IEC 1226 and MilStd 882C, and are
discussed in Appendix A.1.4 and A.1.2,
respectively.

5. Prepare a table like that in Figure 5 from the
tables created in step 4. This table can be
used to derive an estimate of risk for each
hazard.

This table matches the hazard severity
categories of Figure 3 to the hazard
probability levels of Figure 4 to obtain a
measure of overall risk. Thus, events with
critical severity and occasional probability
of occurrence are judged to have high risk.

6. For each hazard identified in the PHL, PHA
or other hazard analyses, identify its risk
level using the table prepared in step 5.

7. Prepare an application system requirements
specification.

8. Create and document a system design,
which shows the allocation of safety
functions to software components and other
system components and shows how the
software component and the remaining
application system components will
coordinate to address the hazards discovered
in previous analyses.

9. Prepare the remaining documents to the
extent required in order to specify, design,
implement, verify and analyze the software
component of the RPS. This includes
analysis of additional hazards introduced by
choice of specific digital hardware,
computer language, compiler, software
architecture, software design techniques, and
design rules. This analysis will be revisited
as digital system design and software design
are elaborated.

3. REQUIREMENTS HAZARD
ANALYSIS

Software requirements hazard analysis
investigates the impact of the software
requirements specification on system hazards.
Requirements can generally be divided into sets,
each of which addresses some aspect of the
software. These sets are termed qualities here. A
recommended list of qualities to be considered
during software hazard analysis is given in
Figure 6. Some variations may be required to
match special situations.

The general intent of software requirements
hazard analysis is to examine each quality, and
each requirement within the quality, to assess
the likely impact on hazards. McDermid et al.
(1994, 1995) suggest the use of guide words to
assess impact; this idea is adapted here. A set of
guide phrases is supplied for each quality that
can be used to help assess the impact on hazards
of each requirement associated with the quality.

Section 3. Requirements Hazard Analysis

9

These guide phrases are shown in Figure 7. This
figure suggests concepts to be examined for each
requirement that relates to specific software
qualities. In some cases, a requirement may
affect more than one quality. The figure lists the
various qualities; in some cases, these are further
divided into aspects of the quality. The third
column contains a code for the life cycle phase
during which use of the guide phrase is
recommended.

Letters are:

R Requirements

A Architectural Design

D Detailed Design

C Coding

The last column contains the guide phrases. In
addition to the phrases listed, the analyst should
examine the impact on hazards if the
requirement is actually met.

Description Category Definition

Catastrophic A Death, system loss, or severe environmental damage

Critical B Severe injury, severe occupational illness, major
system or environmental damage

Marginal C Minor injury, minor occupational illness or minor
system or environmental damage

Negligible -- Less than minor injury, occupational illness or less
than minor system or environmental damage

Figure 3. Hazard Severity Categories
(based on IEC 1126)

Description Level Estimate of Probability

Frequent A Likely to occur frequently

Probable B Will occur several times in the
life of an item

Occasional C Likely to occur some time in the
life of an item

Remote D Unlikely but possible to occur
in the life of an item

Improbable E So unlikely, it can be assumed
occurrence may not be
experienced

Figure 4. Hazard Probability Levels
(based on Mil-Std 882C)

Section 3. Requirements Hazard Analysis

10

Hazard Category

Frequency Catastrophic Critical Marginal Negligible

Frequent High High High Medium

Probable High High Medium Low

Occasional High High Medium Low

Remote High Medium Low Low

Improbable Medium Low Low Low

Figure 5. Example Matrix for Determining Risk

Quality Description of Quality

Accuracy The term accuracy denotes the degree of freedom from error of sensor and
operator input, the degree of exactness possessed by an approximation or
measurement, and the degree of freedom of actuator output from error.

Capacity The terms capacity denotes the ability of the software system to achieve its
objectives within the hardware constraints imposed by the computing
system being used. The main factors of capacity are Execution Capacity
(timing) and Storage Capacity (sizing). These refer, respectively, to the
availability of sufficient processing time and memory resources to satisfy
the software requirements.

Functionality The term functionality denotes the operations which must be carried out by
the software. Functions generally transform input information into output
information in order to affect the reactor operation. Inputs may be obtained
from sensors, operators, other equipment or other software as appropriate.
Outputs may be directed to actuators, operators, other equipment or other
software as appropriate.

Reliability The term reliability denotes the degree to which a software system or
component operates without failure. This definition does not consider the
consequences of failure, only the existence of failure. Reliability
requirements may be derived from the general system reliability
requirements by imposing reliability requirements on the software
components of the application system which are sufficient to meet the
overall system reliability requirements.

Robustness The term robustness denotes the ability of a software system or component
to function correctly in the presence of invalid inputs or stressful
environmental conditions. This includes the ability to function correctly
despite some violation of the assumptions in its specification.

Safety The term safety is used here to denote those properties and characteristics
of the software system that directly affect or interact with system safety
considerations. The other qualities discussed in this table are important
contributors to the overall safety of the software-controlled protection
system, but are primarily concerned with the internal operation of the
software. This quality is primarily concerned with the affect of the software
on system hazards and the measures taken to control those hazards.

Security The term security denotes the ability to prevent unauthorized, undesired
and unsafe intrusions. Security is a safety concern in so far as such
intrusions can affect the safety-related functions of the software.

Figure 6. Software Qualities Relating to Potential Hazards

Section 3. Requirements Hazard Analysis

11

Quality Aspect Phase Guide Phrases

Accuracy Sensor RADC Stuck at all zeroes

RADC Stuck at all ones

RADC Stuck elsewhere

RADC Below minimum range

RADC Above maximum range

RADC Within range, but wrong

RADC Physical units are incorrect

RADC Wrong data type or data size

Actuator RADC Stuck at all zeroes

RADC Stuck at all ones

RADC Stuck elsewhere

RADC Below minimum range

RADC Above maximum range

RADC Within range, but wrong

RADC Physical units are incorrect

RADC Wrong data type or data size

Operator Input &
Output

RA Numerical value below acceptable range

RA Numerical value above acceptable range

RA Numerical value within range, but wrong

RA Numerical value has wrong physical units

RA Numerical value has wrong data type or data
size

RA Non-numerical value incorrect

Calculation RDC Calculated result is outside acceptable error
bounds (too low)

RDC Calculated result is outside acceptable error
bounds (too high)

RDC Formula or equation is wrong

RDC Physical units are incorrect

RDC Wrong data type or data size

Figure 7. Guide Phrases for Software Qualities

Section 3. Requirements Hazard Analysis

12

Capacity Message RADC Message volume is below stated minimum
RADC Message volume exceeds stated maximum
RADC Message volume is erratic
RADC Message rate is below stated minimum
RADC Message rate exceeds stated maximum
RADC Message rate is erratic
RADC Message contents are incorrect, but plausible
RADC Message contents are obviously scrambled

Timing RADC Input signal fails to arrive
RADC Input signal occurs too soon
RADC Input signal occurs too late
RADC Input signal occurs unexpectedly
RADC System behavior is not deterministic
RADC Output signal fails to arrive at actuator
RADC Output signal arrives too soon
RADC Output signal arrives too late
RADC Output signal arrives unexpectedly
R Insufficient time allowed for operator action
AD Processing occurs in an incorrect sequence
DC Code enters non-terminating loop
DC Deadlock occurs
C Interrupt loses data

C Interrupt loses control information

Functionality RA Function is not carried out as specified (for
each mode of operation)

RA Function is not initialized properly before
being executed

RA Function executes when trigger conditions
are not satisfied

RA Trigger conditions are satisfied but function
fails to execute

RA Function continues to execute after
termination conditions are satisfied

RA Termination conditions are not satisfied but
function terminates

RA Function terminates before necessary actions,
calculations, events, etc. are completed

R Function is executed in incorrect operating
mode

R Function uses incorrect inputs
R Function produces incorrect outputs

Figure 7. Guide Phrases for Software Qualities, continued

Section 3. Requirements Hazard Analysis

13

Reliability RA Software is less reliable than required
RA Software is more reliable than required
RA Software reliability is not known when the

system goes into production use
RA Software does not degrade gracefully when

required (crashes instead)
RA Software fault tolerance requirements (if

any) are not met
RA Reliability varies among the different modes

of operation
R Software fails in-service test
R Software fails
A Hardware unit fails
A Software failure propagates to uninvolved

processes
A Software fails to recover from failure
A Hardware or software failure is not reported

to operator
A Software fails to detect inappropriate

operation action
AD Data is passed to incorrect process

Robustness RA Software fails in the presence of unexpected
input data

RA Software fails in the presence of incorrect
input data

RA Software fails when anomalous conditions
occur

RA Software fails to recover itself when required
RA Software fails during message overload
RA Software fails when messages missed

Safety RA Software causes system to move to a
hazardous state

RA Software fails to move system from
hazardous to nonhazardous state

RA Software fails to initiate emergency
shutdown when required to do so

RA Software fails to recognize hazardous reactor
state

Security RA Unauthorized person has access to software
system

RA Unauthorized changes have been made to
software

RA Unauthorized changes have been made to
plant data

Figure 7. Guide Phrases for Software Qualities, continued

Section 3. Requirements Hazard Analysis

14

Numerous traditional qualities generally
considered necessary to an adequate software
requirements specification are not included in
Figure 7. Completeness, consistency,
correctness, traceability, unambiguity and
verifiability are, of course, necessary, but should
be handled as part of requirements analysis and
verification, not as part of hazards analysis.

For example, the first quality is sensor accuracy.
Suppose there were an accuracy requirement for
a particular sensor that “The value from sensor
123 shall be between 100 and 500, with an error
of no more than 5%.” Then, the following
questions should be asked:

• What is the effect on hazards if the sensor
reading satisfies the requirement? In
particular, what if the reading is 5% away
from the actual value?

• What is the effect on hazards if the sensor is
stuck at all zeros?

• What if the sensor is stuck at all ones?

• What if the sensor value is less than 100?

• What if the sensor value is greater than 500?

• What if the sensor value is between 100 and
500, but is not within 5% of the actual
value?

It is important that this analysis not be
sidetracked into asking how such conditions
might occur, or into arguments on the
impossibility of the conditions. For hazard
analysis, assume that the conditions can occur,
and examine the consequences.

3.1. Inputs to Software
Requirements Hazard Analysis

The following information should be available
to perform the requirements hazard analysis.

• Preliminary Hazard List

• Preliminary Hazard Analysis

• Safety Analysis Report

• Protection System Design Description

• Software Requirements Specification

3.2. Analysis Procedures

The following steps may be used to carry out the
requirements hazard analysis. The steps are
meant to help organize the process. Variations in
the process, as well as overlap in time among the
steps, is to be expected.

1. Identify the hazards for which software is in
any way responsible. This identification
includes an estimate of the risk associated
with each hazard.

2. Identify the software criticality level
associated with each hazard and control
category, using the table in Figure 5.

3. Match each safety-critical requirement in the
software requirements specification (SRS)
against the system hazards and hazard
categories in order to assign a criticality
level to each requirement.

4. Analyze each requirement using the guide
phrases in Figure 7 which are marked with
an “R.” These guide phrases are meant to
initiate discussion and suggest possibilities
to consider, not to bound the analysis.

There are a great many phrases in Figure 7.
For any particular requirement, most of
these will not apply. For example, only
about eight of the phrases would apply to the
example given at the beginning of Section 3.
Part of the analysis of this step is to select
the quality or qualities that apply to the
requirement, so that only applicable phrases
are used.

5. Document the results of the analysis.

Section 4. Architectural Design Hazard Analysis

15

The information collected during this hazard
analysis can be of considerable use later during
software development. The combination of
criticality level assigned to the various software
requirements and the guide phrase analysis
provides information on the assignment of
resources during further development,
verification and testing. It can also suggest the
need for redesign of the application system to
reduce software-affected hazards.

It is possible that the Software Requirements
Hazard Analysis leads to the conclusion that
some changes should be made to the system
design. In particular, it might be discovered that
some system requirements assigned to software
can be better met through hardware.

It is likely that the hazard analysis will conclude
that some requirements do not pose hazards—
that is, there are no circumstances where failure
to satisfy the requirements can cause a hazard.
Such requirements probably do not need to be
considered in the following analysis steps.

There are many ways to carry out the analysis of
step 4. The technique most prominently
documented in the literature is Fault Tree
Analysis (FTA) (see Appendix A.4 for a
discussion). Event Tree Analysis (ETA) should
also be considered, using the guide phrases as
top events in the tree and expanding the tree to
consider consequences. The choice of technique
depends on what information is known to the
analyst and what information is sought.

3.3. Outputs of Software
Requirements Hazard Analysis

The products of the requirements hazard
analysis consist of the following items:

• A list of software hazards.

• A criticality level for each hazard that can be
affected by the software.

• A criticality level for each software
requirement.

• An analysis of the impact on hazards of the
software when it operates correctly or

incorrectly with respect to meeting each
requirement.

4. ARCHITECTURAL DESIGN
HAZARD ANALYSIS

Software design hazard analysis is divided here
into two sections: one which examines the
computer system architecture, and one which
examines the detailed software design. The
former is discussed in this chapter.

A computer system architecture consists of three
segments: the hardware architecture, the
software architecture and the mapping between
them. The hardware architecture describes the
various hardware elements: processors,
memories, disk drives, display devices and
communication lines. The software architecture
describes the various software processes, data
stores, screen layouts and logical
communication paths. The mapping describes
how the software will operate on the hardware;
this includes identifying which processes will
operate on which processors, where the various
data stores will be located, where the various
screens will be displayed, and how logical
communications will take place over physical
paths.

Some architectures may introduce complex
functions or may have failure modes that other
architectures do not have. These represent
additional hazards introduced by design choices
and which are not identified by previous hazards
analyses.

The architectural design documents should
contain a two-way trace between requirements
and design elements. Each requirement is traced
to the design elements that implement that
requirement, and each design element is traced
back to the requirements which it implements. If
this trace does not exist, it should be created
before the architecture hazard analysis begins.

The analysis here builds on the requirements
hazard analysis by extending the latter to the
software architecture. A similar analysis is
recommended for the hardware architecture and

Section 4. Architectural Design Hazard Analysis

16

the overall computer system architecture
(hardware, software and mapping).

For example, suppose there is a timing
requirement that a certain signal be sent to a
particular valve actuator within five seconds of
receiving an overload signal from a particular
sensor. This requirement would have been
analyzed as part of the software requirements
hazard analysis. Now, suppose the logical data
path is as shown in Figure 8. Among other guide
phrases that apply, the analyst should consider
the effect on the hazard if the message to be sent
on path “c” never arrives. In this instance, a
hazard that did not exist previously has been
added by the decision to implement the logical
data path “c.”

4.1. Inputs to Software Architecture
Hazard Analysis

The following information should be available
to perform the architecture hazard analysis.

• Preliminary Hazard List

• Preliminary Hazard Analysis

• Safety Analysis Report

• Software Requirements Specification

• Software Requirements Hazard Analysis

• Requirements to Architecture Trace Matrix

• Software Architecture Description

4.2. Analysis Procedures

The following steps may be used to carry out the
software architecture hazard analysis.

1. For each software architectural element,
determine all the requirements affected by
the element. This results from the trace
matrix.

2. Assign a risk level to each software
architectural element, based on the risk
associated with all the requirements affected

by the element. Figure 9 shows one method
of doing this. The figure uses the risk levels
taken from Figure 5, and considers the
number of requirements of various risk
levels affected by the element in order to
assign a risk to the element. The suggested
algorithm is as follows:

a. Pick one requirement. Assign the
architectural element severity level to be
the same as that of the requirement. If
the requirement has medium severity,
for example, then the initial element
level is also “medium.”

b. For each additional requirement,
accumulate an architectural element
severity estimate by estimating the
severity of consequences should all of
the identified requirements fail to be met
simultaneously.

c. Continue until all requirements affected
by the architectural element have been
considered. The final architectural
element risk level is the design failure
probability of the architectural element
times the accumulated severity
associated with failure.

3. Analyze each safety-critical architectural
element using the guide phrases in Figure 7
marked “A.” These phrases are meant to
initiate discussion and suggest possibilities
to consider, not to bound the analysis.

As with the requirements discussion in
Section 4.2, there are a great many phrases
in Figure 7 marked “A.” For any particular
architectural element, many of these will not
apply. Part of the analysis of this step is to
select the quality or qualities that apply to
the architectural element, so that only
applicable phrases are used.

4. Document the results of the analysis.

Section 4. Architectural Design Hazard Analysis

17

S
en

so
r

P
1

P
2 P
3

P
4

A
ct

ua
to

r

a

b

c

d

e

f

Figure 8. Example of a Software Architecture

Section 5. Detailed Design Hazard Analysis

18

Architecture Element
Risk

Risk Level from Adding a Requirement

Level High Medium Low

Very High Very High Very High Very High

High Very High High High

Medium High Medium Medium

Low High Medium Low

Figure 9. Determination of Architecture Risk Levels

The information collected during this analysis
can supplement that of the software
requirements hazard analysis. In particular, if
several architectural elements are classified as
very-high-risk, consideration should be given to
redesigning the architecture, either to lower the
risk associated with the software architecture or
to provide compensatory mechanisms to lower
overall application system risk. As with the
requirements hazard analysis, assignment of
resources to further development, verification,
and testing can be based on this hazard analysis.

Architecture hazard analysis is likely to
demonstrate that some architectural elements are
nonhazardous; that is, the analysis shows that no
possible failure of the element can affect a
system hazard. Such elements require only
minimal attention during design and
implementation hazard analysis.

If FTA or ETA were used during the
requirements hazard analysis, they may be
extended to include the software and hardware
architectures. The value of the trees comes
mostly in the information contained in the
structure of the trees. It is not likely to be
possible to make a convincing assignment of
failure probabilities to architectural elements, so
using the tree to attempt to calculate the
probability of root events should be used as a
reality check and resource allocation tool only.

4.3. Outputs of Software
Architecture Hazard Analysis

The products of the architecture hazard analysis
consist of the following items:

• A list of software architectural design
elements with assigned risk level.

• Analysis of the impact on hazards of the
software when the specified architecture is
used.

• A list of design constraints and coding
constraints which are required to mitigate
hazards associated with the chosen
architecture.

• Recommendations for design changes which
will reduce the hazard criticality level of
software elements.

• Recommendations for increased analysis
and testing to be carried out during detailed
design V&V, code V&V and final system
validation analysis and testing.

5. DETAILED DESIGN HAZARD
ANALYSIS

The detailed design documents should contain a
two-way trace among the software requirements,
the software architecture and the detailed design.
Each requirement is traced through the
architecture to the detailed design elements that
implement the requirement. Each detailed design
element is traced back through the architecture
to the requirements which it implements. If this
trace does not exist, it should be created before
this hazard analysis begins.

The primary task here is to see if the detailed
design changes any of the results of the
requirements or architecture hazard analyses. If
the latter have been performed carefully and
completely, there should be little more to do.
Verification becomes of increasing importance
at this point in the life cycle, using the results of
the hazard analyses to direct the verification
activities.

Section 6. Code Hazard Analysis

19

5.1. Inputs to Software Detailed
Design Hazard Analysis

The following information should be available
to perform the architecture hazard analysis.

• Preliminary Hazard List

• Preliminary Hazard Analysis

• Safety Analysis Report

• Software Requirements Specification

• Software Architecture Description

• Software Detailed Design Description

• Software Requirements and Architecture
Hazard Analyses

• Trace Matrix, Requirements to Architecture
to Detailed Design

5.2. Analysis Procedures

The following steps may be used to carry out the
software detailed design hazard analysis.

1. For each software architecture element,
prepare a list of detailed design elements
which together constitute the architectural
element. It may happen that some design
elements are used in more than one
architectural element. For example, low
level communication software may be used
by almost every element of the architecture.
Device drivers are additional examples.

2. For each design element, use the guide
phrases in Figure 7 that are marked “D” to
determine if the hazards associated with the
architecture elements have changed. This
may occur if design elements, design rules,
design tools, or design techniques introduce
common-mode failure mechanisms to two or
more architectural elements. If so, previous
hazard analyses may need to be redone.

3. Document the results.

If resources do not exist to analyze all design
elements, choose those elements that (1)
constitute architectural elements of very high or
high risk and (2) those elements that occur in

many architectural elements. The latter are most
likely service elements, such as communications
modules, device drivers or file managers.

It should be expected that, in most cases, the
analysis will quickly determine that there has
been no change to systems hazards due to the
detailed design. That is, if a careful job has been
done in identifying, controlling and mitigating
hazards during the requirements and architecture
phrases, there should be little left to do at the
detailed design phase. If this is true, emphasis
can start shifting from the global concern of
systems hazards to the more local concern of
implementation correctness.

The information collected during this analysis
can help provide assurance that no new hazards
have been introduced by the detailed design. It
can also help with the assignment of resources
for coding and testing.

5.3. Outputs of Software Detailed
Design Hazard Analysis

The product of the software detailed design
hazard analysis consists of the documented
analysis.

6. CODE HAZARD ANALYSIS

The software documents should contain a two-
way trace between the detailed design element
and the code elements which implement the
design elements. If this trace does not exist, it
should be created before code hazard analysis
begins.

Correctness is much more a concern at this point
than hazard analysis, provided that the previous
three analyses have been performed well. The
main emphasis is on making sure that nothing in
the code changes the previous analyses or
creates a new hazard. Results of the previous
analyses can be used to direct verification and
testing resources to the most critical code
elements.

Section 7. Summary and Conclusions

20

6.1. Inputs to Software Code
Hazard Analysis

The following information should be available
to perform the architecture hazard analysis.

• Preliminary Hazard List

• Preliminary Hazard Analysis

• Safety Analysis Report

• Software Requirements Specification

• Software Architecture Description

• Software Detailed Design Description

• Code

• Software Requirements, Architecture and
Design Hazard Analyses

• Trace Matrix, Requirements for Architecture
to Design to Code Elements

6.2. Analysis Procedures

The following steps may be used to carry out the
code hazard analysis.

1. For each code element, use the guide
phrases in Figure 7 that are marked “C” to
determine if the results of the design hazard
analysis need to be modified or if new
hazards have been introduced. If so, some or
all of the previous analyses may need to be
redone.

Resources are not likely to exist to analyze
all code elements. Concentrate on those that
encode the most risky design elements and
those that support basic computing system
functions.

2. Examine tools, computer language, and
coding techniques for their potential to
introduce common-mode failure
mechanisms to all modules. Identify coding
rules or tool-usage rules that avoid risky tool
features or coding techniques. If a pre-
existing operating system will be used,
identify the risky features or functions that
should be avoided.

3. Document the results.

6.3. Outputs of Software Code
Hazard Analysis

The product of the code hazard analysis consists
of the documented analysis.

7. SUMMARY AND
CONCLUSIONS

The software hazard analysis described in
Sections 3-6 could require a significant effort
when applied to the digital computer-based I&C
system for modern reactor control and protection
systems or another process I&C system whose
failure could result in significant adverse public,
environmental, or financial consequences. It
must be recognized that in reality, software
hazards analysis is only one of several activities
necessary for the development of software to be
used in safety-critical applications. Principal
activities in this regard include configuration
management, verification and validation, and
quality assurance activities. A detailed
discussion of the life cycle activities for the
development of safety-critical software is given
in Lawrence (1993). A summary of design
factors important to the realization of high-
quality software that is “fit for duty” in safety-
critical applications is given in Lawrence (1994).

With the above view in mind, one can then
consider where software hazards analysis offers
a unique capability to improve the integrity of
safety-critical software. Section 2 provides an
overview of the objectives of the hazards
analysis activities for both system hazards and
software hazards and the relation between
hazards analysis activities and other principal
software development life cycle activities. A
major impact of the results from the software
hazards analysis is on changes to the software
requirements specification for the purpose of
eliminating identified hazards that are affected
by the software or that are not adequately
managed by the software. Another major impact
of these results is on the software architecture, in
particular the addition of software architectural
features that improve the management of
hazards through the concept of defense-in-depth.

Section 7. Summary and Conclusions

21

The impact of software hazards analysis on the
software design specification, with the exception
of the use of potentially complex operations
associated with data flow and control flow, is
overshadowed by the need to address concerns
related to correctness through the traceability
and V&V aspects discussed in Section 5. The
emphasis on correctness is even more true for
the software code. The discussion in Section 6
provides guidance on matters that are more
effectively dealt with through correctness
concerns.

The more detailed presentation of the software
hazards analysis in Section 3, Requirements
Hazards Analysis, includes an approach to guide
the assessment of the impact on hazards of each
requirement as it is related to the qualities given
in Figure 6. The guide phrases for this
assessment are presented in Figure 7.

The selection of applicable guide phrases to
particular requirements must be governed by the
potential impact of each software hazard on the

system, as presented in item 3 of section 2.4 and
the accompanying risk associated with that
hazard, as given in Figure 5. Similar selection
considerations are applicable for the
architectural design hazards analysis described
in Section 4.

In conclusion, limiting the bulk of the software
hazards investigation to the software
requirements specification and the software
architectural design and the judicious selection
of the events to be assessed should lead to a
hazards analysis result that (1) minimizes the
probability of occurrence of those hazards with
the more significant consequences and (2)
minimizes the increase in design requirements
that could have the potential for an increase in
the complexity of the design.

The process outlined in Chapters 3-6 is based on
the documents listed in the References. It has not
been tested or evaluated in the field.

Section 7. Summary and Conclusions

22

Section 8. References

23

8. REFERENCES

Air Force Inspection and Safety Center. 1985.
Software System Safety. Headquarters Air Force
Inspection and Safety Center, AFISC SSH 1-1,
September 5.

Bowman, William C., Glenn H. Archinoff, Vijay
M. Raina, David R. Tremaine and Nancy G.
Leveson. 1991. “An Application of Fault Tree
Analysis to Safety Critical Software at Ontario
Hydro.” Probabilistic Safety Assessment and
Management, G. Apostolakis, ed. (1991): 363-
368.

Brown, Michael L. 1985. “Software Safety for
Complex Systems. IEEE Annual Conf. of the
Eng. in Medicine and Biology Society (1985):
210-216.

Center for Chemical Process Safety. 1992. 1992.
Guidelines for Hazard Evaluation Procedures,
American Institute of Chemical Engineers.

Clarke, Stephen J. and John A. McDermid.
1993. “Software Fault Trees and Weakest
Preconditions: a Comparison and Analysis.”
Soft. Eng. J. 8, no. 4 (July): 225-236.

Connolly, Brian. 1989. “Software Safety Goal
Verification Using Fault Tree Techniques: A
Critically Ill Patient Monitor Example.”
Computer Assurance Conf. (Compass) (June):
18-21.

Elahi, B. John. 1993. “Safety and Hazard
Analysis for Software Controlled Medical
Devices.” Sixth Annual IEEE Symp. On Comp.-
Based Med. Syst (June): 10-15.

Froome, P. K. D. 1992. Interim Def Stan 00-56:
Hazard Analysis and Safety Classification of the
Computer and Programmable Electronic System
Elements of Defense Equipment,” Centre for
Software Reliability, Ninth Annual Conf. on Soft.
Safety, Luxembourg (April): 1-14.

Gowen, Lon D., James S. Collofello and Frank
W. Calliss. 1992. “Preliminary Hazard Analysis
for Safety-Critical Software Systems,” Phoenix
Conf. Comp. and Comm. (April): 501-508.

Hammer, Willie. 1972. Handbook of System and
Product Safety. Prentice-Hall.

IEC 1226. 1993. Nuclear Power Plants—
Instrumentation and Control Systems Important
for Safety—Classification. International
Electrotechnical Commission.

IEEE 7-4.3.2. 1993. IEEE Standard Criteria for
Digital Computers in Safety Systems of Nuclear
Power Generating Stations. Institute of
Electronic and Electrical Engineers.

IEEE 1228. 1994. IEEE Standard for Software
Safety Plans. Institute of Electronic and
Electrical Engineers.

Lal-Gabe, Anshoo. 1990. “Hazards Analysis and
its Application to Build Confidence in Software
Test Results.” Third Annual IEEE Symp. On
Comp.-Based Med. Syst. (June): 129-134.

Lawrence, J. Dennis. 1993. Software Reliability
and Safety in Nuclear Reactor Protection
Systems. NUREG/CR-6101, UCRL-ID-114839,
Lawrence Livermore National Laboratory,
November.

Lawrence, J. Dennis and G. Gary Preckshot.
1994. Design Factors for Safety-Critical
Software, NUREG/CR-6294, Lawrence
Livermore National Laboratory, December.

Levan, David G. 1992. “Preliminary Procedure
for Software Hazard Analysis of Safety-Critical
Software.” Prepared for Ontario Hydro Nuclear
Safety Department by DLSF Systems, Inc.,
January.

Leveson, Nancy G. and Peter R. Harvey. 1983.
“Analyzing Software Safety.” IEEE Trans. Soft.
Eng. 9, no. 5 (September): 569-579.

Leveson, Nancy G. 1991a. “Safety Assessment
and Management Applied to Software.”
Probabilistic Safety Assessment and
Management, G. Apostolakis, ed. 377-382.

Leveson, Nancy G. 1991b. “Safety.” Aerospace
Software Engineering. Christine Anderson and
Merlin Dorfman, ed., AIAA, 319-336.

Section 8. References

24

Leveson, Nancy G., Stephen S. Cha and
Timothy J. Shimeall, 1991c. “Safety
Verification of Ada Programs Using Software
Fault Trees.” IEEE Software (July): 48-59.

Levinson, Stanley H. and H. Tazewell
Doughtrey. 1993. “Risk Analysis of Software-
Dependent Systems.” Prob. Safety Assessment
Int’l. Topical Meeting (January).

McDermid, J. A., and D. J. Pumfrey. 1994.”A
Development of Hazard Analysis to Aid
Software Design.” Computer Assurance
(Compass) (June): 17-25.

McDermid, John A., M. Nicholson, D. J.
Pumfrey and P. Fenelon. 1995. “Experience with
the Application of HAZOP to Computer-Based
Systems.” Computer Assurance (Compass)
(June): 37-48

McKinlay, Archibald. 1991. “The State of
Software Safety Engineering.” Probabilistic
Safety Assessment and Management, G.
Apostolakis, ed. (1991): 369-376.

Mil-Hdbk-764. 1990. System Safety Engineering
Design Guide for Army Materiel. U.S. Dept. of
Defense (January 12).

Mil-Std 882C. 1993. System Safety Program
Requirements. U.S. Dept. of Defense (January).

MOD 00-56. 1991. Hazard Analysis and Safety
Classification of the Computer and
Programmable Electronic System Elements of
Defense Equipment. Defence Standard 00-56,
Ministry of Defence, Great Britain (April).

Mojdehbakhsh, Ramin, Satish Subramanian,
Ramakrishna Vishnuvajjala, Wei-Tek Tsai and
Lynn Elliott. 1994. “A Process for Software
Requirements Safety Analysis.” Int’l Symp. on
Software Reliability Engineering, (November):
45-54.

NIST 1993. Review of Software Hazard
Analyses. National Institutes of Standards and
Technology. Draft (June 4).

Stephans, Richard A. and Warner W. Talso.
1993. System Safety Analysis Handbook. System
Safety Society, New Mexico Chapter,
Albuquerque, NM, July.

Appendix A. Background

25

APPENDIX A. BACKGROUND

A.1. Standards Review
A.1.1. IEEE 1228, Standard for Software
Safety Plans

IEEE 1228 Standard, Standard for Software
Safety Plans, “describes the minimum
acceptable requirements for the content of a
Software Safety Plan.” A Software Safety Plan
developed to satisfy this Standard will contain
information on both management and technical
aspects of the development activity. The
recommended contents of a Software Safety
Plan, as given by the Standard, are shown in
Figure 10.

Only the analyses which are required in Sections
4.2-4.4 of the Safety Plan (sections 4.4.2-4.4.4
of the Standard) are relevant to the scope of this
report. The Standard itself does not require any
particular types of analyses. It does contain an
appendix which lists some suggested analyses.

The Standard distinguishes between the
Application System and the Software System. In
the context of reactors, for example, the
application system might be the entire reactor, or
the entire reactor protection system, and the
software system is the software which is
contained in the reactor control system or reactor
protection system, respectively. The word
“system,” used here without modification, will
always refer to the entire application system.

The Standard assumes that certain information
will be available prior to performing any safety
analyses. This information is listed next.

1. A Preliminary Hazard Analysis (PHA) and
any other hazard analyses which have been
performed on the entire application system
or any portion of it should be available.
These analyses must include the following
information:

a. Hazardous application system states.

b. Sequences of actions that can cause the
application system to enter a hazardous
state.

c. Sequences of actions intended to return
the application system from a hazardous
state to a nonhazardous state.

d. Actions intended to mitigate the
consequences of an accident.

2. A high-level application system design
should exist and specify:

a. The functions which will be performed
by the software contained in the
application system.

b. Any actions that will be required of the
software in order to prevent the
application system from entering a
hazardous state.

c. Any actions that will be required of the
software in order to move the
application system from a hazardous
state to a nonhazardous state.

d. Any actions that will be required of the
software to mitigate the consequences of
an accident.

3. The interfaces between the software and the
rest of the application system should be
completely defined.

4. A software safety plan (SSP) should exist. It
will describe fully the means by which
software safety analyses will be carried out
for the application system. IEEE Standard
1228 may be used as a model for the SSP. If
the developer prefers, the software safety
plan may be included in the general system
safety plan.

These will be referred to as the System Hazard
Analyses, the System Design, the System
Interface Specification and the Software Safety
Plan, respectively.

The Appendix to the Standard suggests certain
analyses which may be performed during
software development. These are shown in
Figure 11.

Appendix A. Background

26

1. Purpose
2. Definitions, Acronyms and References
3. Software Safety Management

3.1. Organization and Responsibilities
3.2. Resources
3.3. Staff Qualifications and Training
3.4. Software Life Cycle
3.5. Documentation Requirements
3.6. Software Safety Program Records
3.7. Software Configuration Management Activities
3.8. Software Quality Assurance Activities
3.9. Software Verification and Validation Activities
3.10. Tool Support and Approval
3.11. Previously Developed or Purchased Software
3.12. Subcontract Management
3.13. Process Certification

4. Software Safety Analyses
4.1. Software Safety Analyses Preparation
4.2. Software Safety Requirements Analysis
4.3. Software Safety Design Analysis
4.4. Software Safety Code Analysis
4.5. Software Safety Test Analysis
4.6. Software Safety Change Analysis

5. Post-Development
5.1. Training
5.2. Deployment

5.2.1. Installation
5.2.2. Startup and Transition
5.2.3. Operations Support

5.3. Monitoring
5.4. Maintenance
5.5. Retirements and Notification

6. Plan Approval

Figure 10. Outline of a Software Safety Plan

Appendix A. Background

27

Software Safety Requirements Analysis

Criticality Analysis

Specification Analysis

Timing and Sizing Analysis

Software Safety Design Analysis

Logic Analysis

Data Analysis

Interface Analysis

Constraint Analysis

Functional Analysis

Module Analysis

Revised Timing and Sizing Analysis

Software Safety Code Analysis

Logic Analysis

Data Analysis

Interface Analysis

Constraint Analysis

Programming Style Analysis

Non-critical Code Analysis

Revised Timing and Sizing Analysis

Software Safety Test Analysis

Unit Test Analysis

Interface Test Analysis

Subsystem Test Analysis

System-level Test Analysis

Stress Test Analysis

Regression Test Analysis

Figure 11. IEEE 1228 Suggested Safety Analyses

A.1.2. Mil-Std 882C, System Safety
Program Requirements

This Standard applies to all military systems in
which safety is a factor. The Standard is directed
at DoD program managers, and is meant to assist
them in overseeing contractors. The contractors
are expected to carry out the safety program.

The Standard defines hazard severity categories
which provide a qualitative measure of the worst

credible accident. These are shown in Figure 12.
A second table, reproduced here in Figure 13,
categorizes the probability that a hazard will be
created during the planned life expectancy of the
system. This latter table is also qualitative, and
is given both in terms of specific individual
items, and in terms of all items in the inventory.
The Standard points out that the two tables may
need to be modified in some cases to fit
individual situations.

Appendix A. Background

28

The Standard presents detailed requirements as
tasks. These are organized into four sections,
with specific tasks in each section. This
grouping is intended to facilitate understanding,
and does not imply that the tasks are to be
carried out in the order listed. The task sections
and individual tasks are listed in Figure 14.

It is possible to combine Figures 12 and 13 to
show a hazard risk level. One way of doing this

is shown in Figure 15. This latter table can be
used in a hazard analysis in order to manage
risk. For example, if a hazard falls in the “high”
risk category, it might be possible to redesign
the system or use better quality parts in order to
move to a “medium” risk category. Figure 15
can also be used to determine where assessment
resources should be concentrated.

Description Category Definition

Catastrophic I Death, system loss, or severe environmental damage

Critical II Severe injury, severe occupational illness, major
system or environmental damage

Marginal III Minor injury, minor occupational illness or minor
system or environmental damage

Negligible IV Less than minor injury, occupational illness or less
than minor system or environmental damage

Figure 12. Hazard Severity Categories (from Mil-Std 882C)

Description Level Specific Individual Item Fleet or Inventory

Frequent A Likely to occur frequently Continuously experienced

Probable B Will occur several times in the
life of an item

Will occur frequently

Occasional C Likely to occur some time in the
life of an item

Will occur several times

Remote D Unlikely but possible to occur
in the life of an item

Unlikely but can reasonably be
expected to occur

Improbable E So unlikely, it can be assumed
occurrence may not be
experienced

Unlikely to occur, but possible

Figure 13. Hazard Probability Levels (from Mil-Std 882C)

Appendix A. Background

29

Task Number Task Title

100 Program Management and Control

101 System Safety Program
102 System Safety Program Plan
103 Integration / Management of Associate Contractors, Subcontractors and Architect and

Engineering Firms
104 System Safety Program Reviews and Audits
105 System Safety Group / System Safety Working Group Support
106 Hazard Tracking and Risk Resolution
107 System Safety Progress Summary`

200 Design and Integration

201 Preliminary Hazard List
202 Preliminary Hazard Analysis
203 Safety Requirements / Criteria Analysis
204 Subsystem Hazard Analysis
205 System Hazard Analysis
206 Operating and Support Hazard Analysis
207 Health Hazard Assessment

300 Design Evaluation

301 Safety Assessment
302 Test and Evaluation Safety
303 Safety Review of Engineering Change Proposals, Specification Change Notices,

Software Problem Reports and Requests for Deviation / Waiver

400 Compliance and Verification

401 Safety Verification
402 Safety Compliance Assessment
403 Explosive Hazard Classification and Characteristics Data
404 Explosive Ordnance Disposal Data

Figure 14. Detailed Safety Tasks (from Mil-Std 882C)

Hazard Category
Frequency Catastrophic Critical Marginal Negligible

Frequent High High High Medium
Probable High High Medium Low
Occasional High High Medium Low
Remote High Medium Low Low
Improbable Medium Low Low Low

Figure 15. Example Matrix for Residual Risk (from Mil-Std 882C)

Appendix A. Background

30

An additional assessment of risk is
recommended for software, which considers the
potential hazard severity and the degree of
control that the software exercises over the
application. Four control categories are defined,
as follows.

“C1. Software exercises autonomous control
over potentially hazardous hardware
systems5, subsystems or components
without the possibility of intervention to
preclude the occurrence of a hazard.
Failure of the software or a failure to
prevent an event leads directly to a
hazard's occurrence.

“C2a. Software exercises control over
potentially hazardous hardware systems,
subsystems, or components allowing
time for intervention by independent
safety systems to mitigate the hazard.
However, these systems by themselves
are not considered adequate.

“C2b. Software item displays information
requiring immediate operator action to
mitigate a hazard. Software failures will
allow or fail to prevent the hazard's
occurrence.

“C3a. Software item issues commands over
potentially hazardous hardware systems,
subsystems or components requiring
human action to complete the control
function. There are several, redundant,
independent safety measures for each
hazardous event.

“C3b. Software generates information of a
safety critical nature used to make safety
critical decisions. There are several,
redundant, independent safety measures
for each hazardous event.

“C4. Software does not control safety critical
hardware systems, subsystems or
components and does not provide safety
critical information.”

5 In this list, “hardware” refers to all forms of equipment, not just
computer hardware. For example, a missile is considered to be
hardware here.

From this list and the list of hazard categories, a
software hazard criticality matrix can be defined.
This is shown in Figure 16. Risks range from 1
to 5, which may be interpreted as follows:

1 High risk—significant analysis and
testing is required.

2 Medium risk—requirements and design
analysis and in-depth testing is required.

3,4 Moderate risk—high level analysis and
testing is acceptable with management
approval.

5 Low risk—acceptable; no additional
analysis is required.

This scheme does not easily fit reactor
protection systems. It addresses a primary
control system which controls potentially
hazardous equipment. A reactor protection
system is an “independent safety system” in the
sense of item C1A.

A.1.3. AFISC SSH 1-1, Software System
Safety Handbook

This is a companion document to Mil-Std 882,
and is designed to specifically address software.6

Software hazards fall into four broad categories:

1. Inadvertent/unauthorized event. An
unexpected/unwanted event occurs.

2. Out-of-sequence event. A known and
planned event occurs but not when desired.

3. Failure of event to occur. A planned event
does not occur (e.g., a hazard is allowed to
propagate because the program does not
detect the occurrence of the hazard or fails
to act).

4. Magnitude or direction of event is wrong.
This is normally indicative of an algorithm
error.

6 Another handbook, Mil-Hdbk-764, briefly discusses software
hazards analysis.

Appendix A. Background

31

Hazard Category
Control Category Catastrophic Critical Marginal Negligible

C1 5 5 3 1
C2 5 4 2 1
C3 4 3 1 1
C4 3 2 1 1

Figure 16. Example Software Hazard Criticality Matrix (from Mil-Std 882C)

The software hazard analysis effort should begin
early in the software life cycle. It is intended to
ensure that the software complies with safety
requirements and to identify potentially
hazardous conditions. Software hazard analysis
(SwHA) must be fully integrated with the
overall system hazard analysis. Two phases are
identified: preliminary software hazard analysis
(PSwHA) and follow-on software hazard
analysis (FSwHA). However, it is probably
better to view these as a single analysis which
starts with the PSwHA and is revised as needed
during software development.

The PSwHA is based on an analysis of the
following documents:

1. System and subsystem PHAs

2. System and subsystem specifications

3. System allocation and interface documents

4. Functional flow diagrams and related data

5. Flow charts or their functional equivalent

6. Storage allocation and program structure
documents

7. Background information related to safety
requirements associated with the
contemplated testing, manufacturing,
storage, repair and use

8. System energy and toxic or hazardous event
sources which are controlled or influenced
by software

The combination of the PHA and the allocation
of system functions to software can be used to
identify the software components which are
critical to safety. These must be investigated in
depth; other components must be analyzed to

ensure that their operation or failure cannot
impact or influence safety-critical components.

The software hazard analyses should be revised
from time to time during the development
process. The handbook recommends revision
after the critical design review, during coding,
and during integration. Special attention should
be placed on changes to requirements, design,
and coding.

The handbook lists several methods of software
hazard analysis; the list is not meant to be
exhaustive. Software fault tree analysis, software
sneak circuit analysis, nuclear safety cross-check
analysis and Petri net analysis are discussed.

A.1.4. IEC 1226, Classification of Safety
Systems in Nuclear Power Plants

This Standard also uses a hazard severity
classification scheme, but does not weight it by
probability of occurrence. Three categories are
used, labeled A, B and C. The Standard is
specific to nuclear reactors, so is particularly
appropriate to this report. See Figure 3.

The following notations are used:

FSE Functions and the associated Systems and
Equipment that implement them

I&C Instrumentation and Control

NPP Nuclear Power Plant

PIE Postulated Initiating Event

A.1.4.1. Category A

Category A “denotes the FSE which play a
principal role in the achievement or maintenance
of NPP safety.” An I&C FSE falls into this
category if it meets any of the following criteria:

Appendix A. Background

32

• It is required to mitigate the consequence of
a PIE to prevent it from leading to an
accident.

• Its failure when required to operate in
response to a PIE could result in an accident.

• A fault or failure in the FSE would not be
mitigated by another category A FSE, and
would lead directly to an accident.

• It is required to provide information or
control capabilities that allow specified
manual actions to be taken to mitigate the
consequences of a PIE to prevent it from
leading to an accident.

Typical functions of a category A FSE are the
following:

• Reactor shutdown and maintenance of
subcriticality

• Decay heat transport to an ultimate heat sink

• Isolation of containment

• Information for essential operator action

Examples of such FSE are the reactor protection
system, the safety actuation system and safety
system support features. Key instrumentation
and displays that permit operator actions defined
in the operations manual, and required to ensure
safety are also examples of category A FSEs.

A.1.4.2. Category B

Category B “denotes FSE that play a
complementary role to the category A FSE in
the achievement or maintenance of NPP safety.”
An I&C FSE falls into this category if it meets
any of the following criteria:

• It controls the plant so that process variables
are maintained within safe limits.

• A requirement for operation of a category A
FSE in order to avoid an accident would
result from faults or failures of the category
B FSE.

• It is used to prevent or mitigate a minor
radioactive release, or minor degradation of
fuel.

• It is provided to alert control room personnel
to failures in category A FSE.

• It is provided to continuously monitor the
availability of category A FSEs to
accomplish their safety duties.

• It is used to reduce considerably the
frequency of a PIE.

Typical functions of a category B FSE are:

• Automatic control of the reactor primary and
secondary circuit conditions, keeping
variables within safe limits, and prevention
of events from escalating to accidents.

• Monitoring and controlling performance of
individual systems and items of equipment
during the post-accident phase to gain early
warning of the onset of problems.

• Limiting the consequences of internal
hazards.

• Monitoring or controlling the handling of
fuel where a failure could cause a minor
radioactive release.

Examples of category B FSE are the reactor
automatic control system, control room data
processing systems, fire suppression systems
and safety circuits and interlocks of fuel
handling systems used when the reactor is shut
down.

A.1.4.3. Category C

Category C “denotes FSE that play an auxiliary
or indirect role in the achievement or
maintenance of NPP safety.” An I&C FSE falls
into this category if it meets any of the following
criteria:

• It is used to reduce the expected frequency
of a PIE.

• It is used to reduce the demands on, or to
enhance the performance of, a category A
FSE.

• It is used for the surveillance or recording of
conditions of FSE, to determine their safety
status.

Appendix A. Background

33

• It is used to monitor and take mitigating
action following internal hazards within the
reactor design bases, such as fire and flood.

• It is used to ensure personnel safety during
or following events that involve or result in
release of radioactivity within the reactor, or
risk radiation exposure.

• It is used to warn personnel of a significant
release of radioactivity in the reactor or of a
risk of radiation exposure.

• It is used to monitor and take mitigating
action following natural events such as
earthquakes and tornadoes.

• It is the NPP internal access control.

Typical functions of a category C FSE are:

• Those necessary to warn of internal or
external hazards, such as fire, flood,
explosions, earthquakes.

• Those for which operating mistakes could
cause minor radioactive releases, or lead to
radioactive hazard to the operators.

• Access control systems.

Examples include alarm systems, waste stream
monitoring, area radiation monitoring, access
control systems, and emergency
communications systems.

A.1.4.4. Effect of the Classification Scheme

The primary effect is to concentrate
development and assurance efforts on the most
important FSEs—those of category A. An
example is the use of redundancy to achieve
reliability. A category A FSE is required to have
redundancy so that no single point of failure
exists. Redundancy is encouraged for category B
FSEs, but is not required if the reliability goals
can be met without it. No redundancy is
generally needed for category C FSEs, though it
can be used if necessary to meet reliability goals.

A.1.5. IEEE 7-4.3.2, Annex F, Abnormal
Conditions and Events

Annex F of IEEE 7-4.3.2 discusses the
identification and resolution of abnormal
conditions and events (ACEs).

ACEs are grouped into two categories,
depending on their source. Some are caused by
conditions or events that occur outside the
computer system—a failure of a system
component is an example. Others are caused by
failures within the computer system.

Section F.2.3 of the Annex describes a process
for identifying ACEs based on the software life
cycle. It begins at the system design phase, and
proceeds through computer system design,
software requirements, software design,
software implementation, computer integration
testing and computer validation testing. The
Standard lists various considerations for most of
the life cycle phases; these are summarized in
Figures 17-20.

A general procedure is provided for resolving
ACEs. The intent is to eliminate ACEs or reduce
the associated risk where possible. A summary
of the procedure is given in Figure 21.

A.2. General Discussion of Hazard
Analysis

Hammer (1972) lists six functions of hazard
analysis:

1. The investigation and evaluation of the
interrelationships of primary, initiating and
contributory hazards that may be present.

2. The investigation and evaluation of the
circumstances, conditions, equipment,
personnel and other factors involved in the
safety of the system and its operation.

3. The investigation and evaluation of the
means of avoiding or eliminating any
specific hazard by using suitable designs,
procedures, processes or materials.

Appendix A. Background

34

4. The investigation and evaluation of the
controls that may be required to prevent
possible hazards and the best methods for
incorporating those controls in the product
or system.

5. The investigation and evaluation of the
possible damaging effects resulting from
lack or loss of control of any hazard that
cannot be avoided or eliminated.

6. The investigation and evaluation of the
safeguards for preventing injury or damage
if control of the hazard is lost.

Initial hazards analyses must be carried out for
the entire application system. This report
assumes that the five forms of system-level
hazards analyses identified in Mil-Std 882C
have been carried out, except for software
components. The following is a brief list of the
types of hazard analysis given in the Standard:

1. Preliminary Hazard List (PHL) identifies
hazards that may require safety design
consideration or special analyses. It occurs
upon completion of the concept definition
phase of the system life cycle.

2. Preliminary Hazard Analysis (PHA)
identifies and evaluates all system hazards.
It starts in the concept definition phase of
the system life cycle, and ends when the
component-level System Hazard Analysis is
able to begin. The PHA is the foundation for
future system and software hazard analyses.

3. System Hazard Analysis (SHA) examines
the entire system to identify hazards and
assess the risk of the entire system design,

including software. It starts as the system
design matures, close to the design review,
and is updated until the system design is
complete.

4. Component SHA identifies hazards
associated with the design of the
components, and how those hazards will
affect the entire system. It begins as each
component is designed and is updated as the
component design matures.

5. Operating and Support Hazard Analysis
(O&SHA) identifies and evaluates hazards
related to the environment, personnel,
procedures and equipment during a system
operation performed by humans. It begins
before the system test and integration life
cycle phase. O&SHA identifies safety
requirements necessary to eliminate hazards
or mitigate the risk of hazards.

These hazard analyses will identify certain
hazards. The table in Figure 22 suggests broad
classes of hazards that may be present. The
various system hazard analyses will attempt to
eliminate as many hazards as possible, reduce
the probability of occurrence of those that
remain, and reduce the potential damage which
may result from accidents. In the latter two
cases, responsibility will be assigned to specific
system components for the control of
occurrences and consequences. In some cases,
software components may be assigned such
responsibility. If this occurs, software hazard
analysis is a form of component hazard analysis.

Appendix A. Background

35

a. Occurrence of design bases conditions identified in the Safety Analysis Report.

b. Possible independent, dependent and simultaneous ACE events considering failures of
safety equipment.

c. Interface considerations among various elements of the system.

d. Environmental constraints.

e. Operating, test, maintenance and emergency procedures.

f. Design and use of test and maintenance equipment that has potential for introducing
damage, software errors or interrupts.

g. Safety equipment design and possible alternate approaches.

h. Degradation in a subsystem or the total system from normal operation of another
subsystem including non-safety systems.

i. Modes of failure, including reasonable human errors as well as single point failures, and
ACEs created when failures occur in subsystem components.

j. Potential contribution of software, events, faults and occurrences on safety of the system.

k. Potential common mode failures.

l. The method of implementation of the software design requirements and corrective actions
will not impair or degrade the safety system nor introduce new ACEs.

m. The method of controlling design changes during and after system acceptance will not
degrade the safety system nor introduce new ACEs.

Figure 17. Summary of Safety System ACEs Identification

a. Software requirements should be evaluated to identify those that are essential to
accomplishing the safety function. These critical requirements should be evaluated
against the ACE to assess their significance.

b. Requirements for timing and sizing should be included to ensure adequate resources for
execution time, clock time and memory allocations are provided to support the critical
requirements.

c, In designs involving the integration of multiple software systems, consideration should be
given for interdependencies and interactions between the components of the system.

d. Existing software should be evaluated to ensure adequate confidence that no “unintended
functions” detrimental to the operation of the safety system are introduced.

Figure 18. Summary of Software Requirements ACEs Identification

Appendix A. Background

36

a. Equations, algorithms and control logic should be evaluated for potential problems.

b. Potential computational problems should be evaluated.

c. Evaluation of data structure and intended use should be performed.

d. Potential data handling problems should be evaluated.

e. Interface design considerations should be reviewed.

g. Adequate confidence that the design fits within the identified system constraints.

h. Software modules that implement critical functions should be identified.

i. Non-safety modules should be evaluated to provide adequate confidence that they do not
adversely affect safety software.

Figure 19. Summary of Software Design ACEs Identification

a. Evaluate equations, algorithms and control logic for potential problems.

b. Confirm the correctness of algorithms, accuracy, precision and equation discontinuities,
out of range conditions, breakpoints, erroneous inputs, etc.

c. Evaluate the data structure and usage in the code to provide adequate confidence that the
data items are defined and used properly.

d. Provide adequate interface compatibility of software modules with each other and with
external hardware and software.

e. Provide adequate confidence that the software operates within the imposed constraints.

f. Examine non-critical code to provide adequate confidence that it does not adversely
affect the function of critical software.

g. Provide adequate confidence that the results of coding activities are within the timing and
sizing constraints.

Figure 20. Summary of Software Code ACEs Identification

Appendix A. Background

37

a. Eliminate identified ACEs or reduce associated risk through design, if possible.

b. Ensure that the safety functions are protected from identified ACEs, and that non-safety
functions do not create ACEs for the safety functions.

c. Identify, evaluate and eliminate ACEs associated with each system throughout the entire
life cycle of a system.

d. Minimize risk resulting from excessive environmental conditions.

e. Design to minimize risk created by human error in the operation and support of the
system.

f. Create unambiguous requirements definitions to minimize the probability of
misinterpretation by developers.

g. Consider and use historical ACEs data, including lessons learned from other systems.

h. Minimize risk by using existing designs and test techniques whenever possible.

i. Analyze for ACEs and document changes in design, configuration or system
requirements.

j. Document identified ACEs and their resolution.

Figure 21. Summary of General Guidelines for ACE Resolution

Appendix A. Background

38

Acceleration and motion Leakage

Chemical reactions Moisture

Dissociation High humidity

Oxidation Low humidity

Replacement Power source failure

Contamination Pressure

Corrosion High pressure

Electrical Low pressure

System failure Changes

Inadvertent activation Radiation

Shock Thermal

Thermal Electromagnetic

Explosion Ionizing

Fire Ultraviolet

Heat and temperature Structural damage or failure

High temperature Stress concentrations

Low temperature Stress reversals

Changes Toxicity

Impact and shock Vibration and noise

Figure 22. Classes of Hazards (Hammer 1972)

A.3. NIST Review of Software
Hazard Analyses

This draft report, based primarily on Mil-Std
882B (the predecessor of 882C), lists three
requirements for software hazard analysis. The
Software Hazard Analysis should:

1. Respond to every hazard identified in the
System Hazard Analysis.

2. Ensure that the operation of the software
does not interfere with the safety goals or
operation of the system.

3. Evaluate and mitigate how software could
hinder the safety goals or operation of the
system.

The report describes six different software
hazard analyses. The following description is
taken from the report.

1. Software Requirements Hazard Analysis
(SwRHA) ensures that system safety
requirements have been properly defined,
and that they can be traced from the system
requirements to the software requirements;
software design; and operator, user and
diagnostic manuals. It begins during the
requirements phase of the system life cycle.
The PHL and PHA are inputs to this
analysis. SwRHA examines the system
requirements, software requirements and
software design by reviewing system and
software requirements documentation and
program documentation. Recommendations
and design and test requirements are
incorporated into the Software Design

Appendix A. Background

39

Documents and the Software Test Plan. The
results of the SwRHA are presented at the
System Requirements Review (draft),
System Design Review (update) and
Software Requirements Review (final).

2. Software Design Hazard Analysis (SwDHA)
identifies safety-critical software
components that require analysis beyond
design. It starts after the Software
Requirements Review and should be mostly
completed before starting software coding.
The PHA, SHA and SwRHA are inputs to
this analysis. SwDHA defines and analyzes
safety critical software components (e.g.,
assessing their degree of risk and
relationships to other components) and the
design and test plan (e.g., ensuring safety
requirements are properly defined in the
design). Changes are made to the Software
Design Document (to eliminate hazards or
mitigate the risk of hazards), and safety
requirements are integrated into the
Software Test Plan. Recommendations are
made for coding. The results of the SwDHA
are presented at the Software Design
Review.

3. Software Code Hazard Analysis (SwCHA)
identifies how to eliminate hazards or
mitigate the risk of hazards during the
coding phase of the life cycle. It starts at the
beginning of that phase and continues until
after system testing has been completed. The
SwDHA is the input to this analysis.
SwCHA analyzes the actual source and
object code, system interfaces, and software
documentation (to ensure safety
requirements are included).
Recommendations are made to change the
software design, code and software testing.
The results of the SwCHA are presented at
the Test Readiness Review. (SwCHA results
for lower level units are given to
programmers during coding.)

4. The purpose of Software Safety Testing is to
determine that all hazards have been
eliminated or that each hazard’s risk has
been mitigated. Software Safety Testing of
lower-level units starts very soon after their

coding is completed. Software Safety
Testing tests safety-critical software
components under normal conditions and
under abnormal environment and input
conditions. It also ensures that the software
performs correctly and safely under system
testing. Software Safety Testing includes
testing of any commercial or government
furnished software present in the system.
The results of Software Safety Testing is to
identify corrections to the software which,
when implemented, will eliminate hazards
or mitigate the risk of hazards. Retests are
then performed on the corrected software
under the same conditions. Testing of the
software at the system level starts following
a successful Test Readiness Review.

5. The Software/User Interface Analysis
manages hazards that were not eliminated or
controlled in the system design phase. For
example, change recommendations are made
to the design that provide hazard detection
and operator warning, hazard recovery, and
event or process termination.

6. Software Change Hazard Analysis analyzes
all changes made to the software to
determine their impact on safety. Software
hazard analysis and testing is performed on
all changes made to the requirements,
design, code, systems, equipment, and test
documentation to ensure that the changes do
not create new hazards or affect existing
hazards and that the change is properly
incorporated into the code.

A.4. Review of the Published
Literature

The published literature on software hazard
analysis is sparse and recent, except for the
application of fault trees to software. Some
general background can be found in (Brown
1985; Leveson 1991b; Gowen 1992; and Elahi
1993).

Leveson (1991a) proposes to augment traditional
software engineering by a form of hazard
analysis; this idea forms the basis for the
approach proposed in this report.

Appendix A. Background

40

The use of fault trees to analyze software has
received considerable attention. The following
may be consulted: Leveson 1983; Fryer 1985;
Connolly 1989; Lal-Gabe 1990; Bowman 1991;
Leveson 1991a; Leveson 1991c; McKinlay
1991; Levan 1992; Clarke 1993; and Levinson
1993. Much of this, however, uses fault trees to
analyze code for correctness. There are two
difficulties with this approach, and it is not
recommended in this report. First, the most
important decisions that may affect hazards
occur early in the life cycle, when the
requirements are specified and the basic
computer system architecture is chosen. A fault
tree constructed after this is done is likely to
overlook the early decisions, resulting in missed
opportunities for improvement. Second, a fault
tree carried to the program language level is
likely to be very large, making it hard to
analyze. There is also the temptation to
concentrate on the leaves (statements), missing
the important intermediate nodes of the tree that
capture combinations of events that can lead to
failures.

The use of fault trees early in the software
development process can be quite useful,
particularly if they are an extension of fault trees
developed for the overall reactor. They should

probably be restricted to analysis, since the
assignment of failure probabilities to software
architectural elements is very problematic.

A few articles discuss other techniques. Leveson
(1991a) also includes a discussion of Petri nets
and state charts, and Mojdehbakhsh (1994)
includes Statemate charts within a discussion of
fault trees. Levinson (1993) includes fault trees,
failure modes and effects analysis (FMEA) and
Parts Stress Analysis (PSA).

Two articles were most influential on the
development of this report, both by McDermid
(1994, 1995). The first proposes the use of
HAZOP and guide words to structure software
hazard analysis, while the latter describes
experiences in carrying out the technique. This
report extends the approach by McDermid,
placing it into a broader plan for software hazard
analysis, extending the list of guide words to
cover many aspects of software, and specializing
somewhat to the nuclear reactor industry.

Appendix B. Potential Software Safety Analysis Methods

41

APPENDIX B. POTENTIAL SOFTWARE SAFETY ANALYSIS METHODS

The New Mexico chapter of the System Safety
Society issued a report on safety analysis in
1993. The relevant portion of that report is a
312-page discussion of hazard analysis
techniques. Ninety techniques are discussed to
varying levels of detail. The following topics are
included for each technique:

• alternate names

• purpose

• method

• application

• thoroughness

• mastery required

• difficulty of application

• general comments and references

Many of the techniques do not apply directly to
software (for example, Tornado Analysis). Some
of the remaining analyses could have indirect
application to software. Bent Pin Analysis, for
example, applies to connector pins in a cable
connection. If the cable carries computer data, a
bent pin could affect software functions.
However, the analysis is performed on the cable,
not the software, so it is considered to be
indirect.

The 47 techniques that might potentially apply
to software are listed below. The word
“potential” means that it is conceivable that the
technique could be used, not that there is any
evidence of use. For each of these techniques,
the list gives its name and an extract of the
purpose. In some cases, the purpose sections
were not very complete.

• Accident Analysis evaluates the effect of
scenarios that develop into credible and
incredible accidents. This is expected to be
performed at the system level, but could be
extended to software safety by considering
the effect of software on the prevention,
initiation or mitigation of accidents
identified in the system accident analysis.

• Cause-Consequence Analysis combines the
inductive reasoning features of Event Tree
Analysis with deductive reasoning features
of Fault Tree Analysis. The result is a
technique that relates specific accident
consequences to their many possible causes.
Computer codes exist to assist in the
performance of this analysis. GENII,
RSAC4, MACCS, ARA, EPA-AIRDOS and
HOTSPOT are examples.

• Change Analysis examines the potential
effects of modifications from a starting point
or baseline. The Change Analysis
systematically hypothesizes worst-case
effects from each modification from that
baseline.

• Checklist Analysis uses a list of specific
items to identify known types of hazards,
design deficiencies and potential accident
situations associated with common
equipment and operations. The identified
items are compared to appropriate standards.

• Common Cause Analysis identifies any
accident sequences in which two or more
events could occur as the result of a
common event or causative mechanism.

• Comparison-To-Criteria (CTC) Analysis
provides a formal and structured format that
identifies all safety requirements for a
(software) system and ensures compliance
with those requirements.

• Contingency Analysis is a method of
preparing for emergencies by identifying
potential accident-causing conditions and
respective mitigating measures to include
protective systems and equipment.

• Critical Incident Technique uses historical
information or personal experience in order
to identify or determine hazardous
conditions and high-risk practices.

• Criticality Analysis ranks each potential
failure mode identified in a Failure Modes
and Effects Analysis (FMEA) according to

Appendix B. Potential Software Safety Analysis Methods

42

the combined influence of severity
classification and its probability of
occurrence based on the best available data.
It is often combined with FMEA, forming a
Failure Modes, Effects and Criticality
Analysis (FMECA).

• Digraph Utilization Within System Safety is
used to model failure effect scenarios within
large complex systems, thereby modeling
FMEA data. Digraphs can also be used to
model hazardous events and reconstruct
accident scenarios. As a result, both hazard
analysis and accident investigation processes
can be improved via modeling event
sequences.

• Event and Casual Factor Charting
reconstructs the event and develops root
cause(s) associated with the event.

• Event Tree Analysis is an analytical tool that
can be used to organize, characterize and
quantify potential accidents in a methodical
manner. An event tree models the sequence
of events that results from a single initiating
event.

• Failure Modes and Effects Analysis
(FMEA) determines the result or effects of
sub-element failures on a system operation
and classifies each potential failure
according to its severity.

• Failure Modes, Effects and Criticality
Analysis (FMECA) tabulates a list of
equipment in a process along with all of the
possible failure modes for each item. The
effect of each failure is evaluated.

• Fault Hazard Analysis is a basic inductive
method of analysis used to perform an
evaluation that starts with the most specific
form of the system and integrates individual
examinations into the total system
evaluation. It is a subset of FMEA.

• Fault Isolation Methodology is applied to
large hardware/software systems that are
unmanned and computer-controlled. There
are five specific methods: half-step search,
sequential removal or replacement, mass

replacement, lambda search and point of
maximum signal concentration.

• Fault Tree Analysis (FTA) assesses a system
by identifying a postulated undesirable end
event and examines the range of potential
events that could lead to that state or
condition.

• Hazard and Operability Study (HAZOP) is a
group review method that assesses the
significance of each way a process element
could malfunction or be incorrectly
operated. The technique is essentially a
structured brainstorming session using
specific rules.

• Hardware/Software Safety Analysis
examines an entire computer system so that
the total system will operate at an acceptable
level of risk.

• Human Error Analysis is used to identify the
systems and the procedures of a process
where the probability of human error is of
concern. This technique systematically
collects and analyzes the large quantities of
information necessary to make human error
assessments.

• Human Factors Analysis allocates functions,
tasks and resources among humans and
machines.

• Interface Analysis identifies potential
hazards that could occur due to interface
incompatibilities.

• Maximum Credible Accident/Worst-Case
Analysis determines the upper bounds on a
potential accident without regard to the
probability of occurrence of the particular
accident identified.

• Nuclear Safety Cross-Check Analysis
(NSCCA) verifies and validates software
designs. It is also a reliability hazard
assessment method that is traceable to
requirements-based testing.

• Petri Net Analysis provides a technique to
model system components at a wide range
of abstraction levels. It is particularly useful

Appendix B. Potential Software Safety Analysis Methods

43

in modeling interactions of concurrent
components. There are many other
applications.

• Preliminary Hazard Analysis (PHA) can be
used in the early stages of system design
(possibly including software design), thus
saving time and money which could have
been required for major redesign if the
hazards were discovered at a later date.

• Preliminary Hazard List (PHL) creates a list
of hazards to enable management to choose
any hazardous areas to place management
emphasis.

• Probabilistic Risk Assessment (PRA)
provides an analysis technique for low
probability, but catastrophically severe
events. It identifies and delineates the
combinations of events that, if they occur,
will lead to an accident and an estimate of
the frequency of occurrence for each
combination of events, and then estimates
the consequences.

• Production System Hazard Analysis
identifies (1) potential hazards that may be
introduced during the production phase of
system development which could impair
safety and (2) their means of control. This
could apply to software if “production” is
replaced by “operation.”

• Prototype Development provides a
modeling/simulation analysis technique that
constructs early pre-production products so
that the developer may inspect and test an
early version.

• Repetitive Failure Analysis provides a
systematic approach to address, evaluate and
correct repetitive failures.

• Root Cause Analysis identifies causal
factors relating to a mishap or near-miss
incident. The technique goes beyond the
direct causes to identify fundamental
reasons for the fault or failure.

• Safety Review assesses a system or
evaluates operator procedures for hazards in

the design, the operations, or the associated
maintenance.

• Scenario Analysis identifies and corrects
potentially hazardous situations by
postulating accident scenarios where
credible and physically possible events
could cause the accident.

• Sequentially-Timed Events Plot (STEP)
Investigation System is a multi-linear events
sequence-based analytical methodology
used to define systems; analysis system
operations to discover, assess and find
problems; find and assess options to
eliminate or control problems; monitor
future performance; and investigate
accidents. STEP results are consistent,
efficiently produced, non-judgmental,
descriptive and explanatory work products
useful over a system’s entire life cycle.

• Single-Point Failure Analysis identifies
those failures that would produce a
catastrophic event if they were to occur by
themselves.

• Sneak-Circuit Analysis identifies unintended
paths or control sequences that may result in
undesired events or inappropriately timed
events.

• Software Failure Modes and Effects
Analysis (SFMEA) identifies software-
related design deficiencies through analysis
of process flow charting. It also identifies
interest areas for verification/validation and
test and evaluation.

• Software Fault Tree Analysis applies FTA to
software. It can be applied to design or code.

• Software Hazard Analysis identifies,
evaluates and eliminates or mitigates
software hazards by means of a structured
analytical approach that is integrated into the
software development process.

• Software Sneak Circuit Analysis (SSCA) is
used to discover program logic that could
cause undesired program outputs or inhibits,
or incorrect sequencing/timing.

Appendix B. Potential Software Safety Analysis Methods

44

• Subsystem Hazard Analysis (SSHA)
identifies hazards and their effects that may
occur as a result of the design of a
subsystem.

• System Hazard Analysis (SHA)
concatenates and assimilates the results of
Subsystem Hazard Analyses into a single
analysis to ensure that hazards or their
controls or monitors are elevated to a system
level and handled as intended.

• Systematic Inspection uses checklists, codes,
regulations, industry consensus standards
and guidelines, prior mishap experience and
common sense to methodically examine a
design, system or process in order to identify
discrepancies representing hazards.

• Uncertainty Analysis identifies the
incertitude of a result based on the
confidence levels (or lack thereof) and
variability associated with the inputs.

• What-If Analysis is a brainstorming
approach in which a group of experienced
individuals asks questions or voices
concerns about possible undesired events in
a process.

• What-If/Checklist Analysis is a combination
of What-If Analysis and Checklist Analysis.

Appendix C. Software Tools for Hazard Analysis

45

APPENDIX C. SOFTWARE TOOLS FOR HAZARD ANALYSIS

Hazard analysis in general, and software hazard
analysis in particular, can be much assisted by
the use of convenient software tools. Many tools
are available that address different aspects of
hazard analysis and run on different platforms.
Costs vary from free to tens of thousands of
dollars. Capabilities and quality also vary
considerably. Platforms include PC, Macintosh,
Sun and other Unix, VAX and other systems.

A small sample of tools was examined as an
indication of the types of tools available. The
sampling was restricted to tools that use the PC
as a platform (running either under MS-DOS or
Windows 3.x), and tools that cost less than
$500.00. Only one example from each type of
analysis was examined. Results are indicative,
but are not necessarily representative of the tools
available in the marketplace. Tool revisions are
frequent, so the vendors should be contacted
directly for current release information. No
endorsement of any tool is implied by this study.

Six subject areas were used in the study:

• Fault tree analysis (FTA)

• Failure modes, effects and criticality
analysis (FMEA and FMECA)

• HAZOP

• Hazard tracking

• Markov chain modeling

• Reliability growth analysis

The remainder of this appendix describes the
various programs that were investigated. Each
section begins with a brief description of the
program: program name, vendor, platform and
primary functions. A description of the
program’s capabilities follows, with illustrations
of the reports that may be produced. No attempt
is made here to discuss the various techniques
(see Lawrence (1993) and the references given
there for background). Opinions expressed are
those of the author, and apply only to the
software versions actually examined. Most of
the versions examined had minor faults; these
are not discussed. Some major problems are

given for a few of the programs when these
appeared to create considerable difficulty in
using the program.

C.1. Fault Tree Analysis
Product Name: FaulTrEase

Product Vendor: Arthur D. Little, Inc.,
Cambridge, MA.

Platform: Windows 3.1. (A
Macintosh version is
available)

FaulTrEase is a program for drawing and
evaluating fault trees. The program provides
considerable help in drawing the trees, since it
calculates the proper position of the entire tree
as nodes and branches are added or deleted. As a
result, a fault tree can be constructed with
considerable ease by concentrating on the
contents of nodes and the connections between
them. Building fault trees using this program is
quite efficient.

Calculations include cut sets, probability
calculations and calculation of importance.

The program is not able to handle n-out-of-m
nodes, which hampers use for analysis of reactor
protection systems, where it is desirable to
include 2-out-of-4 and similar logics. Printing is
limited to a single sheet, even though the
program knows that several sheets are required
in order to print the full tree. This makes large
fault trees difficult to document. The solution is
to divide the tree into separate subtrees, perform
calculations on the latter, and manually insert
the results into the main tree. This is subject to
copying errors, and is quite inconvenient.

The figures show an example using fault trees
for the AP600 reactor design. The probability
data shown is that used in the AP600 fault trees
when available; estimates are used when AP600
data was not given.

The approach used was to copy the fault trees
from material provided by the NRC Program
Monitor. Options in the program permit tree
layouts to be compressed to save space, or

Appendix C. Software Tools for Hazard Analysis

46

expanded for better appearance. Both options are
illustrated in the examples. Probability values
are assigned to leaves of the tree and the
probability associated with the top node of the
tree can be calculated by the program. If
subtrees are used, they are evaluated first, and
then the value associated with the top node of
the subtree is manually entered into the
corresponding off-page connector of the main
tree. For example, the first page shows the top-
level tree, as printed by the program. Off-page
connecting nodes labeled 8, 11, 22 and 24 are all
similar, and use the results of the second tree,
“AP600 Failure to Actuate Valve” tree. This tree
requires two printed pages since it’s too large to
fit on a single sheet; off-page connector “B” is
used to connect the sheets.

Some additional lower-level charts are
illustrated on succeeding pages.

C.2. FMEA, FMECA, HAZOP

Product Name: HAZOPtimizer

Product Vendor: Arthur D. Little, Inc.,
Cambridge, MA.

Platform: DOS 5.x or Windows 3.1.

HAZOPtimizer is used to organize, store and
print tabular reports used for various types of
hazard analysis. Report columns can be named,
defined and arranged to suit the needs of the
user. The product gives the appearance of a
semi-structured interface to a database.

The primary unit of data collection is termed a
study—which documents the results of a
particular analysis on a particular problem.
Typical analyses include FMEA, FMECA,
HAZOP and PHA. Some pre-defined templates
exist, but were not found useful.

Study results are organized into sheets. Each
sheet has the same definition of data columns;
the use of multiple sheets is for convenience. A
sheet contains lines, upon which the study
results are entered.

The figures show two sample studies. The first is
an FMECA study from the book Guidelines for
Hazard Evaluation Procedures, Center for

Chemical Process Safety, 1992, page 207. The
second uses data from a 1992 evaluation of the
GE ABWR design performed by LLNL for
NRC/NRR. Only a small portion of that study is
included.

The examples illustrate the flexibility of the
program, since different column definitions were
used by the two different sources.

The program limits each box in the tables to 256
characters; this appears to be a limitation
inherited from the underlying database
management system, and was found to be
extremely inconvenient.

C.3. Hazard Tracking
Product Name: HazTrac

Product Vendor: Hoes Engineering,
Davis, CA.

Platform: DOS 5.x or Windows 3.1.

HazTrac assists in carrying out a hazard
analysis. It is considerably more structured than
HAZOPtimizer, and is organized to meet the
requirements of Mil Std 882B. HazTrac can be
used to support the analyses specified therein:
PHA, SHA, SSHA, FMEA and OSHA. (There is
also an option specific to the State of California,
which is not discussed here.)

Information is organized into three levels:
hazard, recommendations and status. There is an
entry at the first level for each defined hazard.
This depends on the type of analysis; a PHA, for
example, records the scenario under which the
hazard may occur, the potential effects and an
assessment of risk. The latter use the Mil Std
tables shown earlier in Figures 12 and 13.

The second level permits the recording of
recommendations on eliminating or mitigating
the hazard. The program records the
recommendations and some associated
information, including names of people and
organizations responsible for the
recommendation and due dates.

The third level permits tracking of changes in
the status of each recommendation. This
includes the current status (open, agreed,

Appendix C. Software Tools for Hazard Analysis

47

dropped or verified) and a historical log of status
events.

This program is considerably easier to use than
HAZOPtimizer, but restricts the user to the
built-in forms. That is, ease of use comes at the
expense of flexibility. Text fields are also
limited to 256 characters, which remains
troublesome. A particularly irritating feature is
the restriction that the program and data must
reside on different disks. The computer used for
examining the program has only a single hard
disk, so the HazTrac data was placed on a floppy
disk. No logical reason for this requirement was
known.

An example of a PHA is shown in the later
figures. It shows a hypothetical analysis of a
chlorine plant, taken from the book Guidelines
for Hazard Evaluation Procedures, Center for
Chemical Process Safety, 1992, pages 270-271.

C.4. Markov Chain Modeling
Product Name: CARMS

Product Vendor: Daina

Platform: Windows 3.1

CARMS is a general Markov modeling program.
It can be used to draw a Markov model, assign
probabilities to transitions and run a simulation.
The latter provides a graph of the calculated
probabilities of the various states through time,
which provides the user with knowledge of how
the state probabilities change with time, and how
fast they move to a steady state.

A model is constructed by defining states,
transitions between states, initial probabilities
for the states, and transition probabilities. The
latter can be defined using equations. Drawing
the model is quite easy using the built-in
capabilities.

CARMS can show the model as a drawing or as
a table. Several examples are shown, giving the
diagram and the results of the simulation. The
screen display of the simulation shows labels for
the various lines in the graph; they are not
printed, however. To show this, the lines in the
graph were annotated by hand below.

There’s not much more to write about this
program. It does one thing, and does it very
nicely.

C.5. Reliability Growth Modeling
Product Name: CASRE.

Product Vendor: Jet Propulsion Laboratory,
Pasadena, CA.

Platform: Windows 3.1.

Reliability growth modeling is a technique for
predicting the reliability of a product undergoing
test when the product is re-engineered after each
failure. This pattern is well suited to software
testing when each failure causes the underlying
fault to be repaired and testing to be resumed
with the modified program.

The primary product for modeling software
reliability growth is SMERFS, a public domain
package available from the Naval Surface
Warfare Center. CASRE uses SMERFS, but has
a window interface and several additional
features.

CASRE can be used starting at any point during
the testing of a module, program or software
system. Failure data is recorded as testing and
repair takes place. Two formats are possible:
recording time units between each failure or
recording the number of failures during each
time interval.

The program analyzes the failure data in various
ways and plots the results on the PC screen or a
printer. Different models can be used to fit the
data and make predictions. Several methods of
displaying the results can be used; all are
illustrated in the example below. This example
uses a sample data set supplied with the product.
Curve fitting is done using a Generalized
Poisson model, with a prediction of future
reliability shown as a line on the charts.

The final plot shows the same data fitted to two
other models: the Schneidewind model and a
Yamada S-shaped model.

Appendix C. Figures: FaulTrEase

48

Appendix C. Figures: FaulTrEase

49

Appendix C. Figures: FaulTrEase

50

Appendix C. Figures: FaulTrEase

51

Appendix C. Figures: FaulTrEase

52

Appendix C. Figures: FaulTrEase

53

Appendix C. Figures: FaulTrEase

54

Appendix C. Figures: HAZOPtimizer

55

Appendix C. Figures: HAZOPtimizer

56

Appendix C. Figures: HAZOPtimizer

57

Appendix C. Figures: HAZOPtimizer

58

Appendix C. Figures: HAZOPtimizer

59

Appendix C. Figures: HazTrac

60

Appendix C. Figures: HazTrac

61

Appendix C. Figures: HazTrac

62

Appendix C. Figures: HazTrac

63

Appendix C. Figures: HazTrac

64

Appendix C. Figures: HazTrac

65

Appendix C. Figures: HazTrac

66

Appendix C. Figures: HazTrac

67

Appendix C. Figures: HazTrac

68

Appendix C. Figures: CARMS

69

Appendix C. Figures: CARMS

70

Appendix C. Figures: CARMS

71

G
yr

o
 F

ai
lu

re

Appendix C. Figures: CARMS

72

Appendix C. Figures: CARMS

73

Appendix C. Figures: CARMS

74

Appendix C. Figures: CASRE

75

Appendix C. Figures: CASRE

76

Appendix C. Figures: CASRE

77

Appendix C. Figures: CASRE

78

Appendix C. Figures: CASRE

79

Appendix C. Figures: CASRE

80

